제복7폴리토프
Uniform 7-polytope7차원 기하학에서 7폴리토프는 6폴리토프 면에 의해 포함된 폴리토프다. 각각의 5폴리토프 능선은 정확히 두 개의 6폴리토프 면에 의해 공유된다.
균일 7-폴리토프는 정점에 대칭 그룹이 전이적이고 정면이 균일한 6-폴리토프인 것을 말한다.
일반 7폴리톱
일반 7폴리탑은 각 4-표면 주위에 u가 {p,q,r,s,t,u}인 슐레플리 기호 {p,q,r,s,t}에 의해 표현된다.
이러한 볼록한 정규 7폴리탑은 정확히 세 가지가 있다.
비콘벡스 정규 7폴리탑은 없다.
특성.
주어진 7 폴리토프의 위상은 베티 번호와 비틀림 계수로 정의된다.[1]
다면체의 특성화에 사용되는 오일러 특성의 값은 그 기본 토폴로지가 무엇이든 더 높은 차원으로 유용하게 일반화하지 않는다. 보다 높은 차원으로 서로 다른 위상들을 신뢰성 있게 구별하기 위한 오일러 특성의 이러한 결여는 보다 정교한 베티 숫자의 발견으로 이어졌다.[1]
마찬가지로 다면체의 방향성 개념은 토로이드성 다면체의 표면 비틀림 특성을 나타내기에는 불충분하며, 이는 비틀림 계수를 사용하게 되었다.[1]
기본 Coxeter 그룹에 의한 균일한 7-폴리토프
반사 대칭이 있는 균일한 7 폴리탑은 Coxeter-Dynkin 다이어그램의 링 순열로 대표되는 4개의 Coxeter 그룹에 의해 생성될 수 있다.
| # | 콕시터군 | 정규 및 반정형 | 균일수 | ||
|---|---|---|---|---|---|
| 1 | A을7 | [36] |
| 71 | |
| 2 | B7 | [4,35] | 127 + 32 | ||
| 3 | D7 | [33,1,1] | 95 (0 고유) | ||
| 4 | E7 | [33,2,1] | 127 | ||
| 프리즘 유한콕시터군 | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| # | 콕시터군 | 콕시터 다이어그램 | |||||||||
| 6+1 | |||||||||||
| 1 | A6A1 | [35]×[ ] | |||||||||
| 2 | BC6A1 | [4,34]×[ ] | |||||||||
| 3 | D6A1 | [33,1,1]×[ ] | |||||||||
| 4 | E6A1 | [32,2,1]×[ ] | |||||||||
| 5+2 | |||||||||||
| 1 | A5I2(p) | [3,3,3]×[p] | |||||||||
| 2 | BC5I2(p) | [4,3,3]×[p] | |||||||||
| 3 | D5I2(p) | [32,1,1]×[p] | |||||||||
| 5+1+1 | |||||||||||
| 1 | A5A12 | [3,3,3]×[ ]2 | |||||||||
| 2 | BC5A12 | [4,3,3]×[ ]2 | |||||||||
| 3 | D5A12 | [32,1,1]×[ ]2 | |||||||||
| 4+3 | |||||||||||
| 1 | A4A3 | [3,3,3]×[3,3] | |||||||||
| 2 | A4B3 | [3,3,3]×[4,3] | |||||||||
| 3 | A4H3 | [3,3,3]×[5,3] | |||||||||
| 4 | BC4A3 | [4,3,3]×[3,3] | |||||||||
| 5 | BC4B3 | [4,3,3]×[4,3] | |||||||||
| 6 | BC4H3 | [4,3,3]×[5,3] | |||||||||
| 7 | H4A3 | [5,3,3]×[3,3] | |||||||||
| 8 | H4B3 | [5,3,3]×[4,3] | |||||||||
| 9 | H4H3 | [5,3,3]×[5,3] | |||||||||
| 10 | F4A3 | [3,4,3]×[3,3] | |||||||||
| 11 | F4B3 | [3,4,3]×[4,3] | |||||||||
| 12 | F4H3 | [3,4,3]×[5,3] | |||||||||
| 13 | D4A3 | [31,1,1]×[3,3] | |||||||||
| 14 | D4B3 | [31,1,1]×[4,3] | |||||||||
| 15 | D4H3 | [31,1,1]×[5,3] | |||||||||
| 4+2+1 | |||||||||||
| 1 | A4I2(p)A1 | [3,3,3]×[p]×[ ] | |||||||||
| 2 | BC4I2(p)A1 | [4,3,3]×[p]×[]×[ ] | |||||||||
| 3 | F4I2(p)A1 | [3,4,3]×[p]×[ ] | |||||||||
| 4 | 하이42(p)A1 | [5,3,3]×[p]×[]×[ ] | |||||||||
| 5 | D4I2(p)A1 | [31,1,1]×[p]×[]×[ ] | |||||||||
| 4+1+1+1 | |||||||||||
| 1 | A4A13 | [3,3,3]×[ ]3 | |||||||||
| 2 | BC4A13 | [4,3,3]×[ ]3 | |||||||||
| 3 | F4A13 | [3,4,3]×[ ]3 | |||||||||
| 4 | H4A13 | [5,3,3]×[ ]3 | |||||||||
| 5 | D4A13 | [31,1,1]×[ ]3 | |||||||||
| 3+3+1 | |||||||||||
| 1 | A3A3A1 | [3,3]×[3,3]×[ ] | |||||||||
| 2 | A3B3A1 | [3,3]×[4,3]×[ ] | |||||||||
| 3 | A3H3A1 | [3,3]×[5,3]×[ ] | |||||||||
| 4 | BC3B3A1 | [4,3]×[4,3]×[ ] | |||||||||
| 5 | BC3H3A1 | [4,3]×[5,3]×[ ] | |||||||||
| 6 | H3A3A1 | [5,3]×[5,3]×[ ] | |||||||||
| 3+2+2 | |||||||||||
| 1 | A3I2(p)I2(q) | [3,3]×[p]×[q] | |||||||||
| 2 | BC3I2(p)I2(q) | [4,3]×[p]×[q] | |||||||||
| 3 | H3I2(p)I2(q) | [5,3]×[p]×[q] | |||||||||
| 3+2+1+1 | |||||||||||
| 1 | A3I2(p)A12 | [3,3]×[p]×[ ]2 | |||||||||
| 2 | BC3I2(p)A12 | [4,3]×[p]×[ ]2 | |||||||||
| 3 | 하이32(p)A12 | [5,3]×[p]×[ ]2 | |||||||||
| 3+1+1+1+1 | |||||||||||
| 1 | A3A14 | [3,3]×[ ]4 | |||||||||
| 2 | BC3A14 | [4,3]×[ ]4 | |||||||||
| 3 | H3A14 | [5,3]×[ ]4 | |||||||||
| 2+2+2+1 | |||||||||||
| 1 | I2(p)I2(q)I2(r)A을1 | [p]×[q]×[r]×[ ] | |||||||||
| 2+2+1+1+1 | |||||||||||
| 1 | I2(p)I2(q)A13 | [p]×[q]×[ ]3 | |||||||||
| 2+1+1+1+1+1 | |||||||||||
| 1 | I2(p)A15 | [p]×[ ]5 | |||||||||
| 1+1+1+1+1+1+1 | |||||||||||
| 1 | A을17 | [ ]7 | |||||||||
A가족7
A7 계열의 대칭은 순서 40320 (8 요인)이다.
하나 이상의 링이 있는 Coxeter-Dynkin 다이어그램의 모든 순열에 기초한 71개의 (64+8-1) 양식이 있다. 71명 모두가 아래에 열거되어 있다. Norman Johnson의 잘린 이름이 주어진다. 상호 참조를 위해 보우어 이름과 약어도 제공된다.
이러한 폴리토페스의 대칭 Coxeter 평면 그래프는 A7 폴리토페스의 목록을 참조하십시오.
| 균일한7 폴리토페스 | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| # | 콕시터-딘킨 도표 | 잘림 지수 | 존슨 이름 Bowers 이름(및 약자) | 기준점 | 요소 개수 | ||||||
| 6 | 5 | 4 | 3 | 2 | 1 | 0 | |||||
| 1 | t0 | 7-630x(oca) | (0,0,0,0,0,0,0,1) | 8 | 28 | 56 | 70 | 56 | 28 | 8 | |
| 2 | t1 | 수정 7-심플렉스(roc) | (0,0,0,0,0,0,1,1) | 16 | 84 | 224 | 350 | 336 | 168 | 28 | |
| 3 | t2 | 양방향 7-심플렉스(broc) | (0,0,0,0,0,1,1,1) | 16 | 112 | 392 | 770 | 840 | 420 | 56 | |
| 4 | t3 | 3차 수정 7-심플렉스(he) | (0,0,0,0,1,1,1,1) | 16 | 112 | 448 | 980 | 1120 | 560 | 70 | |
| 5 | t0,1 | 잘린 7-심플렉스(토크) | (0,0,0,0,0,0,1,2) | 16 | 84 | 224 | 350 | 336 | 196 | 56 | |
| 6 | t0,2 | 7-심플렉스(사로) | (0,0,0,0,0,1,1,2) | 44 | 308 | 980 | 1750 | 1876 | 1008 | 168 | |
| 7 | t1,2 | 7-심플렉스(bittoc) 비트런드 | (0,0,0,0,0,1,2,2) | 588 | 168 | ||||||
| 8 | t0,3 | 7-심플렉스(스포) | (0,0,0,0,1,1,1,2) | 100 | 756 | 2548 | 4830 | 4760 | 2100 | 280 | |
| 9 | t1,3 | 바이칸텔레이트 7-심플렉스(사브로) | (0,0,0,0,1,1,2,2) | 2520 | 420 | ||||||
| 10 | t2,3 | 삼중수소 처리 7-심플렉스(tattoc) | (0,0,0,0,1,2,2,2) | 980 | 280 | ||||||
| 11 | t0,4 | 스테로이티드 7-심플렉스(sco) | (0,0,0,1,1,1,1,2) | 2240 | 280 | ||||||
| 12 | t1,4 | 버룬케이트 7-심플렉스(시브포) | (0,0,0,1,1,1,2,2) | 4200 | 560 | ||||||
| 13 | t2,4 | 트리칸텔레이트 7심플렉스(스티로) | (0,0,0,1,1,2,2,2) | 3360 | 560 | ||||||
| 14 | t0,5 | Pentellated 7-simplex (seto) | (0,0,1,1,1,1,1,2) | 1260 | 168 | ||||||
| 15 | t1,5 | 비스테레이트 7-심플렉스(사바치) | (0,0,1,1,1,1,2,2) | 3360 | 420 | ||||||
| 16 | t0,6 | 7-심플렉스(섭취) | (0,1,1,1,1,1,1,2) | 336 | 56 | ||||||
| 17 | t0,1,2 | 캔트런치 7-심플렉스(가로) | (0,0,0,0,0,1,2,3) | 1176 | 336 | ||||||
| 18 | t0,1,3 | 런시터드림 7-심플렉스(패토) | (0,0,0,0,1,1,2,3) | 4620 | 840 | ||||||
| 19 | t0,2,3 | Runcicantellated 7-simplex (paro) | (0,0,0,0,1,2,2,3) | 3360 | 840 | ||||||
| 20 | t1,2,3 | Bicantitruncled 7-simplex (가브로) | (0,0,0,0,1,2,3,3) | 2940 | 840 | ||||||
| 21 | t0,1,4 | 멸균 처리 7-심플렉스(cato) | (0,0,0,1,1,1,2,3) | 7280 | 1120 | ||||||
| 22 | t0,2,4 | 스테리칸텔레이트 7심플렉스(카로) | (0,0,0,1,1,2,2,3) | 10080 | 1680 | ||||||
| 23 | t1,2,4 | Viruncitruntarned 7-simplex (bipto) | (0,0,0,1,1,2,3,3) | 8400 | 1680 | ||||||
| 24 | t0,3,4 | 스테리런케이트 7-심플렉스(세포) | (0,0,0,1,2,2,2,3) | 5040 | 1120 | ||||||
| 25 | t1,3,4 | 비룬시칸텔레이트 7-심플렉스(비프로) | (0,0,0,1,2,2,3,3) | 7560 | 1680 | ||||||
| 26 | t2,3,4 | 트리칸티트런은 7-심플렉스(갓로) | (0,0,0,1,2,3,3,3) | 3920 | 1120 | ||||||
| 27 | t0,1,5 | Pentitruncated 7-simplex (teto) | (0,0,1,1,1,1,2,3) | 5460 | 840 | ||||||
| 28 | t0,2,5 | Penticantellated 7-simplex (tero) | (0,0,1,1,1,2,2,3) | 11760 | 1680 | ||||||
| 29 | t1,2,5 | Bisteritruncated 7-simplex (bacto) | (0,0,1,1,1,2,3,3) | 9240 | 1680 | ||||||
| 30 | t0,3,5 | Pentiruncinated 7-simplex (tepo) | (0,0,1,1,2,2,2,3) | 10920 | 1680 | ||||||
| 31 | t1,3,5 | Bistericantellated 7-simplex (bacroh) | (0,0,1,1,2,2,3,3) | 15120 | 2520 | ||||||
| 32 | t0,4,5 | Pentistericated 7-simplex (teco) | (0,0,1,2,2,2,2,3) | 4200 | 840 | ||||||
| 33 | t0,1,6 | Hexitruncated 7-simplex (puto) | (0,1,1,1,1,1,2,3) | 1848 | 336 | ||||||
| 34 | t0,2,6 | Hexicantellated 7-simplex (puro) | (0,1,1,1,1,2,2,3) | 5880 | 840 | ||||||
| 35 | t0,3,6 | Hexiruncinated 7-simplex (puph) | (0,1,1,1,2,2,2,3) | 8400 | 1120 | ||||||
| 36 | t0,1,2,3 | Runcicantitruncated 7-simplex (gapo) | (0,0,0,0,1,2,3,4) | 5880 | 1680 | ||||||
| 37 | t0,1,2,4 | Stericantitruncated 7-simplex (cagro) | (0,0,0,1,1,2,3,4) | 16800 | 3360 | ||||||
| 38 | t0,1,3,4 | Steriruncitruncated 7-simplex (capto) | (0,0,0,1,2,2,3,4) | 13440 | 3360 | ||||||
| 39 | t0,2,3,4 | Steriruncicantellated 7-simplex (capro) | (0,0,0,1,2,3,3,4) | 13440 | 3360 | ||||||
| 40 | t1,2,3,4 | Biruncicantitruncated 7-simplex (gibpo) | (0,0,0,1,2,3,4,4) | 11760 | 3360 | ||||||
| 41 | t0,1,2,5 | Penticantitruncated 7-simplex (tegro) | (0,0,1,1,1,2,3,4) | 18480 | 3360 | ||||||
| 42 | t0,1,3,5 | Pentiruncitruncated 7-simplex (tapto) | (0,0,1,1,2,2,3,4) | 27720 | 5040 | ||||||
| 43 | t0,2,3,5 | Pentiruncicantellated 7-simplex (tapro) | (0,0,1,1,2,3,3,4) | 25200 | 5040 | ||||||
| 44 | t1,2,3,5 | Bistericantitruncated 7-simplex (bacogro) | (0,0,1,1,2,3,4,4) | 22680 | 5040 | ||||||
| 45 | t0,1,4,5 | Pentisteritruncated 7-simplex (tecto) | (0,0,1,2,2,2,3,4) | 15120 | 3360 | ||||||
| 46 | t0,2,4,5 | Pentistericantellated 7-simplex (tecro) | (0,0,1,2,2,3,3,4) | 25200 | 5040 | ||||||
| 47 | t1,2,4,5 | Bisteriruncitruncated 7-simplex (bicpath) | (0,0,1,2,2,3,4,4) | 20160 | 5040 | ||||||
| 48 | t0,3,4,5 | Pentisteriruncinated 7-simplex (tacpo) | (0,0,1,2,3,3,3,4) | 15120 | 3360 | ||||||
| 49 | t0,1,2,6 | Hexicantitruncated 7-simplex (pugro) | (0,1,1,1,1,2,3,4) | 8400 | 1680 | ||||||
| 50 | t0,1,3,6 | Hexiruncitruncated 7-simplex (pugato) | (0,1,1,1,2,2,3,4) | 20160 | 3360 | ||||||
| 51 | t0,2,3,6 | Hexiruncicantellated 7-simplex (pugro) | (0,1,1,1,2,3,3,4) | 16800 | 3360 | ||||||
| 52 | t0,1,4,6 | Hexisteritruncated 7-simplex (pucto) | (0,1,1,2,2,2,3,4) | 20160 | 3360 | ||||||
| 53 | t0,2,4,6 | Hexistericantellated 7-simplex (pucroh) | (0,1,1,2,2,3,3,4) | 30240 | 5040 | ||||||
| 54 | t0,1,5,6 | Hexipentitruncated 7-simplex (putath) | (0,1,2,2,2,2,3,4) | 8400 | 1680 | ||||||
| 55 | t0,1,2,3,4 | Steriruncicantitruncated 7-simplex (gecco) | (0,0,0,1,2,3,4,5) | 23520 | 6720 | ||||||
| 56 | t0,1,2,3,5 | Pentiruncicantitruncated 7-simplex (tegapo) | (0,0,1,1,2,3,4,5) | 45360 | 10080 | ||||||
| 57 | t0,1,2,4,5 | Pentistericantitruncated 7-simplex (tecagro) | (0,0,1,2,2,3,4,5) | 40320 | 10080 | ||||||
| 58 | t0,1,3,4,5 | Pentisteriruncitruncated 7-simplex (tacpeto) | (0,0,1,2,3,3,4,5) | 40320 | 10080 | ||||||
| 59 | t0,2,3,4,5 | Pentisteriruncicantellated 7-simplex (tacpro) | (0,0,1,2,3,4,4,5) | 40320 | 10080 | ||||||
| 60 | t1,2,3,4,5 | Bisteriruncicantitruncated 7-simplex (gabach) | (0,0,1,2,3,4,5,5) | 35280 | 10080 | ||||||
| 61 | t0,1,2,3,6 | Hexiruncicantitruncated 7-simplex (pugopo) | (0,1,1,1,2,3,4,5) | 30240 | 6720 | ||||||
| 62 | t0,1,2,4,6 | Hexistericantitruncated 7-simplex (pucagro) | (0,1,1,2,2,3,4,5) | 50400 | 10080 | ||||||
| 63 | t0,1,3,4,6 | Hexisteriruncitruncated 7-simplex (pucpato) | (0,1,1,2,3,3,4,5) | 45360 | 10080 | ||||||
| 64 | t0,2,3,4,6 | Hexisteriruncicantellated 7-simplex (pucproh) | (0,1,1,2,3,4,4,5) | 45360 | 10080 | ||||||
| 65 | t0,1,2,5,6 | Hexipenticantitruncated 7-simplex (putagro) | (0,1,2,2,2,3,4,5) | 30240 | 6720 | ||||||
| 66 | t0,1,3,5,6 | Hexipentiruncitruncated 7-simplex (putpath) | (0,1,2,2,3,3,4,5) | 50400 | 10080 | ||||||
| 67 | t0,1,2,3,4,5 | Pentisteriruncicantitruncated 7-simplex (geto) | (0,0,1,2,3,4,5,6) | 70560 | 20160 | ||||||
| 68 | t0,1,2,3,4,6 | Hexisteriruncicantitruncated 7-simplex (pugaco) | (0,1,1,2,3,4,5,6) | 80640 | 20160 | ||||||
| 69 | t0,1,2,3,5,6 | Hexipentiruncicantitruncated 7-simplex (putgapo) | (0,1,2,2,3,4,5,6) | 80640 | 20160 | ||||||
| 70 | t0,1,2,4,5,6 | Hexipentistericantitruncated 7-simplex (putcagroh) | (0,1,2,3,3,4,5,6) | 80640 | 20160 | ||||||
| 71 | t0,1,2,3,4,5,6 | Omnitruncated 7-simplex (guph) | (0,1,2,3,4,5,6,7) | 141120 | 40320 | ||||||
The B7 family
The B7 family has symmetry of order 645120 (7 factorial x 27).
There are 127 forms based on all permutations of the Coxeter-Dynkin diagrams with one or more rings. Johnson and Bowers names.
See also a list of B7 polytopes for symmetric Coxeter plane graphs of these polytopes.
| B7 uniform polytopes | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| # | Coxeter-Dynkin diagram t-notation | Name (BSA) | Base point | Element counts | |||||||
| 6 | 5 | 4 | 3 | 2 | 1 | 0 | |||||
| 1 | t0{3,3,3,3,3,4} | 7-orthoplex (zee) | (0,0,0,0,0,0,1)√2 | 128 | 448 | 672 | 560 | 280 | 84 | 14 | |
| 2 | t1{3,3,3,3,3,4} | Rectified 7-orthoplex (rez) | (0,0,0,0,0,1,1)√2 | 142 | 1344 | 3360 | 3920 | 2520 | 840 | 84 | |
| 3 | t2{3,3,3,3,3,4} | Birectified 7-orthoplex (barz) | (0,0,0,0,1,1,1)√2 | 142 | 1428 | 6048 | 10640 | 8960 | 3360 | 280 | |
| 4 | t3{4,3,3,3,3,3} | Trirectified 7-cube (sez) | (0,0,0,1,1,1,1)√2 | 142 | 1428 | 6328 | 14560 | 15680 | 6720 | 560 | |
| 5 | t2{4,3,3,3,3,3} | Birectified 7-cube (bersa) | (0,0,1,1,1,1,1)√2 | 142 | 1428 | 5656 | 11760 | 13440 | 6720 | 672 | |
| 6 | t1{4,3,3,3,3,3} | Rectified 7-cube (rasa) | (0,1,1,1,1,1,1)√2 | 142 | 980 | 2968 | 5040 | 5152 | 2688 | 448 | |
| 7 | t0{4,3,3,3,3,3} | 7-cube (hept) | (0,0,0,0,0,0,0)√2 + (1,1,1,1,1,1,1) | 14 | 84 | 280 | 560 | 672 | 448 | 128 | |
| 8 | t0,1{3,3,3,3,3,4} | Truncated 7-orthoplex (Taz) | (0,0,0,0,0,1,2)√2 | 142 | 1344 | 3360 | 4760 | 2520 | 924 | 168 | |
| 9 | t0,2{3,3,3,3,3,4} | Cantellated 7-orthoplex (Sarz) | (0,0,0,0,1,1,2)√2 | 226 | 4200 | 15456 | 24080 | 19320 | 7560 | 840 | |
| 10 | t1,2{3,3,3,3,3,4} | Bitruncated 7-orthoplex (Botaz) | (0,0,0,0,1,2,2)√2 | 4200 | 840 | ||||||
| 11 | t0,3{3,3,3,3,3,4} | Runcinated 7-orthoplex (Spaz) | (0,0,0,1,1,1,2)√2 | 23520 | 2240 | ||||||
| 12 | t1,3{3,3,3,3,3,4} | Bicantellated 7-orthoplex (Sebraz) | (0,0,0,1,1,2,2)√2 | 26880 | 3360 | ||||||
| 13 | t2,3{3,3,3,3,3,4} | Tritruncated 7-orthoplex (Totaz) | (0,0,0,1,2,2,2)√2 | 10080 | 2240 | ||||||
| 14 | t0,4{3,3,3,3,3,4} | Stericated 7-orthoplex (Scaz) | (0,0,1,1,1,1,2)√2 | 33600 | 3360 | ||||||
| 15 | t1,4{3,3,3,3,3,4} | Biruncinated 7-orthoplex (Sibpaz) | (0,0,1,1,1,2,2)√2 | 60480 | 6720 | ||||||
| 16 | t2,4{4,3,3,3,3,3} | Tricantellated 7-cube (Strasaz) | (0,0,1,1,2,2,2)√2 | 47040 | 6720 | ||||||
| 17 | t2,3{4,3,3,3,3,3} | Tritruncated 7-cube (Tatsa) | (0,0,1,2,2,2,2)√2 | 13440 | 3360 | ||||||
| 18 | t0,5{3,3,3,3,3,4} | Pentellated 7-orthoplex (Staz) | (0,1,1,1,1,1,2)√2 | 20160 | 2688 | ||||||
| 19 | t1,5{4,3,3,3,3,3} | Bistericated 7-cube (Sabcosaz) | (0,1,1,1,1,2,2)√2 | 53760 | 6720 | ||||||
| 20 | t1,4{4,3,3,3,3,3} | Biruncinated 7-cube (Sibposa) | (0,1,1,1,2,2,2)√2 | 67200 | 8960 | ||||||
| 21 | t1,3{4,3,3,3,3,3} | Bicantellated 7-cube (Sibrosa) | (0,1,1,2,2,2,2)√2 | 40320 | 6720 | ||||||
| 22 | t1,2{4,3,3,3,3,3} | Bitruncated 7-cube (Betsa) | (0,1,2,2,2,2,2)√2 | 9408 | 2688 | ||||||
| 23 | t0,6{4,3,3,3,3,3} | Hexicated 7-cube (Supposaz) | (0,0,0,0,0,0,1)√2 + (1,1,1,1,1,1,1) | 5376 | 896 | ||||||
| 24 | t0,5{4,3,3,3,3,3} | Pentellated 7-cube (Stesa) | (0,0,0,0,0,1,1)√2 + (1,1,1,1,1,1,1) | 20160 | 2688 | ||||||
| 25 | t0,4{4,3,3,3,3,3} | Stericated 7-cube (Scosa) | (0,0,0,0,1,1,1)√2 + (1,1,1,1,1,1,1) | 35840 | 4480 | ||||||
| 26 | t0,3{4,3,3,3,3,3} | Runcinated 7-cube (Spesa) | (0,0,0,1,1,1,1)√2 + (1,1,1,1,1,1,1) | 33600 | 4480 | ||||||
| 27 | t0,2{4,3,3,3,3,3} | Cantellated 7-cube (Sersa) | (0,0,1,1,1,1,1)√2 + (1,1,1,1,1,1,1) | 16128 | 2688 | ||||||
| 28 | t0,1{4,3,3,3,3,3} | Truncated 7-cube (Tasa) | (0,1,1,1,1,1,1)√2 + (1,1,1,1,1,1,1) | 142 | 980 | 2968 | 5040 | 5152 | 3136 | 896 | |
| 29 | t0,1,2{3,3,3,3,3,4} | Cantitruncated 7-orthoplex (Garz) | (0,1,2,3,3,3,3)√2 | 8400 | 1680 | ||||||
| 30 | t0,1,3{3,3,3,3,3,4} | Runcitruncated 7-orthoplex (Potaz) | (0,1,2,2,3,3,3)√2 | 50400 | 6720 | ||||||
| 31 | t0,2,3{3,3,3,3,3,4} | Runcicantellated 7-orthoplex (Parz) | (0,1,1,2,3,3,3)√2 | 33600 | 6720 | ||||||
| 32 | t1,2,3{3,3,3,3,3,4} | Bicantitruncated 7-orthoplex (Gebraz) | (0,0,1,2,3,3,3)√2 | 30240 | 6720 | ||||||
| 33 | t0,1,4{3,3,3,3,3,4} | Steritruncated 7-orthoplex (Catz) | (0,0,1,1,1,2,3)√2 | 107520 | 13440 | ||||||
| 34 | t0,2,4{3,3,3,3,3,4} | Stericantellated 7-orthoplex (Craze) | (0,0,1,1,2,2,3)√2 | 141120 | 20160 | ||||||
| 35 | t1,2,4{3,3,3,3,3,4} | Biruncitruncated 7-orthoplex (Baptize) | (0,0,1,1,2,3,3)√2 | 120960 | 20160 | ||||||
| 36 | t0,3,4{3,3,3,3,3,4} | Steriruncinated 7-orthoplex (Copaz) | (0,1,1,1,2,3,3)√2 | 67200 | 13440 | ||||||
| 37 | t1,3,4{3,3,3,3,3,4} | Biruncicantellated 7-orthoplex (Boparz) | (0,0,1,2,2,3,3)√2 | 100800 | 20160 | ||||||
| 38 | t2,3,4{4,3,3,3,3,3} | Tricantitruncated 7-cube (Gotrasaz) | (0,0,0,1,2,3,3)√2 | 53760 | 13440 | ||||||
| 39 | t0,1,5{3,3,3,3,3,4} | Pentitruncated 7-orthoplex (Tetaz) | (0,1,1,1,1,2,3)√2 | 87360 | 13440 | ||||||
| 40 | t0,2,5{3,3,3,3,3,4} | Penticantellated 7-orthoplex (Teroz) | (0,1,1,1,2,2,3)√2 | 188160 | 26880 | ||||||
| 41 | t1,2,5{3,3,3,3,3,4} | Bisteritruncated 7-orthoplex (Boctaz) | (0,1,1,1,2,3,3)√2 | 147840 | 26880 | ||||||
| 42 | t0,3,5{3,3,3,3,3,4} | Pentiruncinated 7-orthoplex (Topaz) | (0,1,1,2,2,2,3)√2 | 174720 | 26880 | ||||||
| 43 | t1,3,5{4,3,3,3,3,3} | Bistericantellated 7-cube (Bacresaz) | (0,1,1,2,2,3,3)√2 | 241920 | 40320 | ||||||
| 44 | t1,3,4{4,3,3,3,3,3} | Biruncicantellated 7-cube (Bopresa) | (0,1,1,2,3,3,3)√2 | 120960 | 26880 | ||||||
| 45 | t0,4,5{3,3,3,3,3,4} | Pentistericated 7-orthoplex (Tocaz) | (0,1,2,2,2,2,3)√2 | 67200 | 13440 | ||||||
| 46 | t1,2,5{4,3,3,3,3,3} | Bisteritruncated 7-cube (Bactasa) | (0,1,2,2,2,3,3)√2 | 147840 | 26880 | ||||||
| 47 | t1,2,4{4,3,3,3,3,3} | Biruncitruncated 7-cube (Biptesa) | (0,1,2,2,3,3,3)√2 | 134400 | 26880 | ||||||
| 48 | t1,2,3{4,3,3,3,3,3} | Bicantitruncated 7-cube (Gibrosa) | (0,1,2,3,3,3,3)√2 | 47040 | 13440 | ||||||
| 49 | t0,1,6{3,3,3,3,3,4} | Hexitruncated 7-orthoplex (Putaz) | (0,0,0,0,0,1,2)√2 + (1,1,1,1,1,1,1) | 29568 | 5376 | ||||||
| 50 | t0,2,6{3,3,3,3,3,4} | Hexicantellated 7-orthoplex (Puraz) | (0,0,0,0,1,1,2)√2 + (1,1,1,1,1,1,1) | 94080 | 13440 | ||||||
| 51 | t0,4,5{4,3,3,3,3,3} | Pentistericated 7-cube (Tacosa) | (0,0,0,0,1,2,2)√2 + (1,1,1,1,1,1,1) | 67200 | 13440 | ||||||
| 52 | t0,3,6{4,3,3,3,3,3} | Hexiruncinated 7-cube (Pupsez) | (0,0,0,1,1,1,2)√2 + (1,1,1,1,1,1,1) | 134400 | 17920 | ||||||
| 53 | t0,3,5{4,3,3,3,3,3} | Pentiruncinated 7-cube (Tapsa) | (0,0,0,1,1,2,2)√2 + (1,1,1,1,1,1,1) | 174720 | 26880 | ||||||
| 54 | t0,3,4{4,3,3,3,3,3} | Steriruncinated 7-cube (Capsa) | (0,0,0,1,2,2,2)√2 + (1,1,1,1,1,1,1) | 80640 | 17920 | ||||||
| 55 | t0,2,6{4,3,3,3,3,3} | Hexicantellated 7-cube (Purosa) | (0,0,1,1,1,1,2)√2 + (1,1,1,1,1,1,1) | 94080 | 13440 | ||||||
| 56 | t0,2,5{4,3,3,3,3,3} | Penticantellated 7-cube (Tersa) | (0,0,1,1,1,2,2)√2 + (1,1,1,1,1,1,1) | 188160 | 26880 | ||||||
| 57 | t0,2,4{4,3,3,3,3,3} | Stericantellated 7-cube (Carsa) | (0,0,1,1,2,2,2)√2 + (1,1,1,1,1,1,1) | 161280 | 26880 | ||||||
| 58 | t0,2,3{4,3,3,3,3,3} | Runcicantellated 7-cube (Parsa) | (0,0,1,2,2,2,2)√2 + (1,1,1,1,1,1,1) | 53760 | 13440 | ||||||
| 59 | t0,1,6{4,3,3,3,3,3} | Hexitruncated 7-cube (Putsa) | (0,1,1,1,1,1,2)√2 + (1,1,1,1,1,1,1) | 29568 | 5376 | ||||||
| 60 | t0,1,5{4,3,3,3,3,3} | Pentitruncated 7-cube (Tetsa) | (0,1,1,1,1,2,2)√2 + (1,1,1,1,1,1,1) | 87360 | 13440 | ||||||
| 61 | t0,1,4{4,3,3,3,3,3} | Steritruncated 7-cube (Catsa) | (0,1,1,1,2,2,2)√2 + (1,1,1,1,1,1,1) | 116480 | 17920 | ||||||
| 62 | t0,1,3{4,3,3,3,3,3} | Runcitruncated 7-cube (Petsa) | (0,1,1,2,2,2,2)√2 + (1,1,1,1,1,1,1) | 73920 | 13440 | ||||||
| 63 | t0,1,2{4,3,3,3,3,3} | Cantitruncated 7-cube (Gersa) | (0,1,2,2,2,2,2)√2 + (1,1,1,1,1,1,1) | 18816 | 5376 | ||||||
| 64 | t0,1,2,3{3,3,3,3,3,4} | Runcicantitruncated 7-orthoplex (Gopaz) | (0,1,2,3,4,4,4)√2 | 60480 | 13440 | ||||||
| 65 | t0,1,2,4{3,3,3,3,3,4} | Stericantitruncated 7-orthoplex (Cogarz) | (0,0,1,1,2,3,4)√2 | 241920 | 40320 | ||||||
| 66 | t0,1,3,4{3,3,3,3,3,4} | Steriruncitruncated 7-orthoplex (Captaz) | (0,0,1,2,2,3,4)√2 | 181440 | 40320 | ||||||
| 67 | t0,2,3,4{3,3,3,3,3,4} | Steriruncicantellated 7-orthoplex (Caparz) | (0,0,1,2,3,3,4)√2 | 181440 | 40320 | ||||||
| 68 | t1,2,3,4{3,3,3,3,3,4} | Biruncicantitruncated 7-orthoplex (Gibpaz) | (0,0,1,2,3,4,4)√2 | 161280 | 40320 | ||||||
| 69 | t0,1,2,5{3,3,3,3,3,4} | Penticantitruncated 7-orthoplex (Tograz) | (0,1,1,1,2,3,4)√2 | 295680 | 53760 | ||||||
| 70 | t0,1,3,5{3,3,3,3,3,4} | Pentiruncitruncated 7-orthoplex (Toptaz) | (0,1,1,2,2,3,4)√2 | 443520 | 80640 | ||||||
| 71 | t0,2,3,5{3,3,3,3,3,4} | Pentiruncicantellated 7-orthoplex (Toparz) | (0,1,1,2,3,3,4)√2 | 403200 | 80640 | ||||||
| 72 | t1,2,3,5{3,3,3,3,3,4} | Bistericantitruncated 7-orthoplex (Becogarz) | (0,1,1,2,3,4,4)√2 | 362880 | 80640 | ||||||
| 73 | t0,1,4,5{3,3,3,3,3,4} | Pentisteritruncated 7-orthoplex (Tacotaz) | (0,1,2,2,2,3,4)√2 | 241920 | 53760 | ||||||
| 74 | t0,2,4,5{3,3,3,3,3,4} | Pentistericantellated 7-orthoplex (Tocarz) | (0,1,2,2,3,3,4)√2 | 403200 | 80640 | ||||||
| 75 | t1,2,4,5{4,3,3,3,3,3} | Bisteriruncitruncated 7-cube (Bocaptosaz) | (0,1,2,2,3,4,4)√2 | 322560 | 80640 | ||||||
| 76 | t0,3,4,5{3,3,3,3,3,4} | Pentisteriruncinated 7-orthoplex (Tecpaz) | (0,1,2,3,3,3,4)√2 | 241920 | 53760 | ||||||
| 77 | t1,2,3,5{4,3,3,3,3,3} | Bistericantitruncated 7-cube (Becgresa) | (0,1,2,3,3,4,4)√2 | 362880 | 80640 | ||||||
| 78 | t1,2,3,4{4,3,3,3,3,3} | Biruncicantitruncated 7-cube (Gibposa) | (0,1,2,3,4,4,4)√2 | 188160 | 53760 | ||||||
| 79 | t0,1,2,6{3,3,3,3,3,4} | Hexicantitruncated 7-orthoplex (Pugarez) | (0,0,0,0,1,2,3)√2 + (1,1,1,1,1,1,1) | 134400 | 26880 | ||||||
| 80 | t0,1,3,6{3,3,3,3,3,4} | Hexiruncitruncated 7-orthoplex (Papataz) | (0,0,0,1,1,2,3)√2 + (1,1,1,1,1,1,1) | 322560 | 53760 | ||||||
| 81 | t0,2,3,6{3,3,3,3,3,4} | Hexiruncicantellated 7-orthoplex (Puparez) | (0,0,0,1,2,2,3)√2 + (1,1,1,1,1,1,1) | 268800 | 53760 | ||||||
| 82 | t0,3,4,5{4,3,3,3,3,3} | Pentisteriruncinated 7-cube (Tecpasa) | (0,0,0,1,2,3,3)√2 + (1,1,1,1,1,1,1) | 241920 | 53760 | ||||||
| 83 | t0,1,4,6{3,3,3,3,3,4} | Hexisteritruncated 7-orthoplex (Pucotaz) | (0,0,1,1,1,2,3)√2 + (1,1,1,1,1,1,1) | 322560 | 53760 | ||||||
| 84 | t0,2,4,6{4,3,3,3,3,3} | Hexistericantellated 7-cube (Pucrosaz) | (0,0,1,1,2,2,3)√2 + (1,1,1,1,1,1,1) | 483840 | 80640 | ||||||
| 85 | t0,2,4,5{4,3,3,3,3,3} | Pentistericantellated 7-cube (Tecresa) | (0,0,1,1,2,3,3)√2 + (1,1,1,1,1,1,1) | 403200 | 80640 | ||||||
| 86 | t0,2,3,6{4,3,3,3,3,3} | Hexiruncicantellated 7-cube (Pupresa) | (0,0,1,2,2,2,3)√2 + (1,1,1,1,1,1,1) | 268800 | 53760 | ||||||
| 87 | t0,2,3,5{4,3,3,3,3,3} | Pentiruncicantellated 7-cube (Topresa) | (0,0,1,2,2,3,3)√2 + (1,1,1,1,1,1,1) | 403200 | 80640 | ||||||
| 88 | t0,2,3,4{4,3,3,3,3,3} | Steriruncicantellated 7-cube (Copresa) | (0,0,1,2,3,3,3)√2 + (1,1,1,1,1,1,1) | 215040 | 53760 | ||||||
| 89 | t0,1,5,6{4,3,3,3,3,3} | Hexipentitruncated 7-cube (Putatosez) | (0,1,1,1,1,2,3)√2 + (1,1,1,1,1,1,1) | 134400 | 26880 | ||||||
| 90 | t0,1,4,6{4,3,3,3,3,3} | Hexisteritruncated 7-cube (Pacutsa) | (0,1,1,1,2,2,3)√2 + (1,1,1,1,1,1,1) | 322560 | 53760 | ||||||
| 91 | t0,1,4,5{4,3,3,3,3,3} | Pentisteritruncated 7-cube (Tecatsa) | (0,1,1,1,2,3,3)√2 + (1,1,1,1,1,1,1) | 241920 | 53760 | ||||||
| 92 | t0,1,3,6{4,3,3,3,3,3} | Hexiruncitruncated 7-cube (Pupetsa) | (0,1,1,2,2,2,3)√2 + (1,1,1,1,1,1,1) | 322560 | 53760 | ||||||
| 93 | t0,1,3,5{4,3,3,3,3,3} | Pentiruncitruncated 7-cube (Toptosa) | (0,1,1,2,2,3,3)√2 + (1,1,1,1,1,1,1) | 443520 | 80640 | ||||||
| 94 | t0,1,3,4{4,3,3,3,3,3} | Steriruncitruncated 7-cube (Captesa) | (0,1,1,2,3,3,3)√2 + (1,1,1,1,1,1,1) | 215040 | 53760 | ||||||
| 95 | t0,1,2,6{4,3,3,3,3,3} | Hexicantitruncated 7-cube (Pugrosa) | (0,1,2,2,2,2,3)√2 + (1,1,1,1,1,1,1) | 134400 | 26880 | ||||||
| 96 | t0,1,2,5{4,3,3,3,3,3} | Penticantitruncated 7-cube (Togresa) | (0,1,2,2,2,3,3)√2 + (1,1,1,1,1,1,1) | 295680 | 53760 | ||||||
| 97 | t0,1,2,4{4,3,3,3,3,3} | Stericantitruncated 7-cube (Cogarsa) | (0,1,2,2,3,3,3)√2 + (1,1,1,1,1,1,1) | 268800 | 53760 | ||||||
| 98 | t0,1,2,3{4,3,3,3,3,3} | Runcicantitruncated 7-cube (Gapsa) | (0,1,2,3,3,3,3)√2 + (1,1,1,1,1,1,1) | 94080 | 26880 | ||||||
| 99 | t0,1,2,3,4{3,3,3,3,3,4} | Steriruncicantitruncated 7-orthoplex (Gocaz) | (0,0,1,2,3,4,5)√2 | 322560 | 80640 | ||||||
| 100 | t0,1,2,3,5{3,3,3,3,3,4} | Pentiruncicantitruncated 7-orthoplex (Tegopaz) | (0,1,1,2,3,4,5)√2 | 725760 | 161280 | ||||||
| 101 | t0,1,2,4,5{3,3,3,3,3,4} | Pentistericantitruncated 7-orthoplex (Tecagraz) | (0,1,2,2,3,4,5)√2 | 645120 | 161280 | ||||||
| 102 | t0,1,3,4,5{3,3,3,3,3,4} | Pentisteriruncitruncated 7-orthoplex (Tecpotaz) | (0,1,2,3,3,4,5)√2 | 645120 | 161280 | ||||||
| 103 | t0,2,3,4,5{3,3,3,3,3,4} | Pentisteriruncicantellated 7-orthoplex (Tacparez) | (0,1,2,3,4,4,5)√2 | 645120 | 161280 | ||||||
| 104 | t1,2,3,4,5{4,3,3,3,3,3} | Bisteriruncicantitruncated 7-cube (Gabcosaz) | (0,1,2,3,4,5,5)√2 | 564480 | 161280 | ||||||
| 105 | t0,1,2,3,6{3,3,3,3,3,4} | Hexiruncicantitruncated 7-orthoplex (Pugopaz) | (0,0,0,1,2,3,4)√2 + (1,1,1,1,1,1,1) | 483840 | 107520 | ||||||
| 106 | t0,1,2,4,6{3,3,3,3,3,4} | Hexistericantitruncated 7-orthoplex (Pucagraz) | (0,0,1,1,2,3,4)√2 + (1,1,1,1,1,1,1) | 806400 | 161280 | ||||||
| 107 | t0,1,3,4,6{3,3,3,3,3,4} | Hexisteriruncitruncated 7-orthoplex (Pucpotaz) | (0,0,1,2,2,3,4)√2 + (1,1,1,1,1,1,1) | 725760 | 161280 | ||||||
| 108 | t0,2,3,4,6{4,3,3,3,3,3} | Hexisteriruncicantellated 7-cube (Pucprosaz) | (0,0,1,2,3,3,4)√2 + (1,1,1,1,1,1,1) | 725760 | 161280 | ||||||
| 109 | t0,2,3,4,5{4,3,3,3,3,3} | Pentisteriruncicantellated 7-cube (Tocpresa) | (0,0,1,2,3,4,4)√2 + (1,1,1,1,1,1,1) | 645120 | 161280 | ||||||
| 110 | t0,1,2,5,6{3,3,3,3,3,4} | Hexipenticantitruncated 7-orthoplex (Putegraz) | (0,1,1,1,2,3,4)√2 + (1,1,1,1,1,1,1) | 483840 | 107520 | ||||||
| 111 | t0,1,3,5,6{4,3,3,3,3,3} | Hexipentiruncitruncated 7-cube (Putpetsaz) | (0,1,1,2,2,3,4)√2 + (1,1,1,1,1,1,1) | 806400 | 161280 | ||||||
| 112 | t0,1,3,4,6{4,3,3,3,3,3} | Hexisteriruncitruncated 7-cube (Pucpetsa) | (0,1,1,2,3,3,4)√2 + (1,1,1,1,1,1,1) | 725760 | 161280 | ||||||
| 113 | t0,1,3,4,5{4,3,3,3,3,3} | Pentisteriruncitruncated 7-cube (Tecpetsa) | (0,1,1,2,3,4,4)√2 + (1,1,1,1,1,1,1) | 645120 | 161280 | ||||||
| 114 | t0,1,2,5,6{4,3,3,3,3,3} | Hexipenticantitruncated 7-cube (Putgresa) | (0,1,2,2,2,3,4)√2 + (1,1,1,1,1,1,1) | 483840 | 107520 | ||||||
| 115 | t0,1,2,4,6{4,3,3,3,3,3} | Hexistericantitruncated 7-cube (Pucagrosa) | (0,1,2,2,3,3,4)√2 + (1,1,1,1,1,1,1) | 806400 | 161280 | ||||||
| 116 | t0,1,2,4,5{4,3,3,3,3,3} | Pentistericantitruncated 7-cube (Tecgresa) | (0,1,2,2,3,4,4)√2 + (1,1,1,1,1,1,1) | 645120 | 161280 | ||||||
| 117 | t0,1,2,3,6{4,3,3,3,3,3} | Hexiruncicantitruncated 7-cube (Pugopsa) | (0,1,2,3,3,3,4)√2 + (1,1,1,1,1,1,1) | 483840 | 107520 | ||||||
| 118 | t0,1,2,3,5{4,3,3,3,3,3} | Pentiruncicantitruncated 7-cube (Togapsa) | (0,1,2,3,3,4,4)√2 + (1,1,1,1,1,1,1) | 725760 | 161280 | ||||||
| 119 | t0,1,2,3,4{4,3,3,3,3,3} | Steriruncicantitruncated 7-cube (Gacosa) | (0,1,2,3,4,4,4)√2 + (1,1,1,1,1,1,1) | 376320 | 107520 | ||||||
| 120 | t0,1,2,3,4,5{3,3,3,3,3,4} | Pentisteriruncicantitruncated 7-orthoplex (Gotaz) | (0,1,2,3,4,5,6)√2 | 1128960 | 322560 | ||||||
| 121 | t0,1,2,3,4,6{3,3,3,3,3,4} | Hexisteriruncicantitruncated 7-orthoplex (Pugacaz) | (0,0,1,2,3,4,5)√2 + (1,1,1,1,1,1,1) | 1290240 | 322560 | ||||||
| 122 | t0,1,2,3,5,6{3,3,3,3,3,4} | Hexipentiruncicantitruncated 7-orthoplex (Putgapaz) | (0,1,1,2,3,4,5)√2 + (1,1,1,1,1,1,1) | 1290240 | 322560 | ||||||
| 123 | t0,1,2,4,5,6{4,3,3,3,3,3} | Hexipentistericantitruncated 7-cube (Putcagrasaz) | (0,1,2,2,3,4,5)√2 + (1,1,1,1,1,1,1) | 1290240 | 322560 | ||||||
| 124 | t0,1,2,3,5,6{4,3,3,3,3,3} | Hexipentiruncicantitruncated 7-cube (Putgapsa) | (0,1,2,3,3,4,5)√2 + (1,1,1,1,1,1,1) | 1290240 | 322560 | ||||||
| 125 | t0,1,2,3,4,6{4,3,3,3,3,3} | Hexisteriruncicantitruncated 7-cube (Pugacasa) | (0,1,2,3,4,4,5)√2 + (1,1,1,1,1,1,1) | 1290240 | 322560 | ||||||
| 126 | t0,1,2,3,4,5{4,3,3,3,3,3} | Pentisteriruncicantitruncated 7-cube (Gotesa) | (0,1,2,3,4,5,5)√2 + (1,1,1,1,1,1,1) | 1128960 | 322560 | ||||||
| 127 | t0,1,2,3,4,5,6{4,3,3,3,3,3} | Omnitruncated 7-cube (Guposaz) | (0,1,2,3,4,5,6)√2 + (1,1,1,1,1,1,1) | 2257920 | 645120 | ||||||
The D7 family
The D7 family has symmetry of order 322560 (7 factorial x 26).
This family has 3×32−1=95 Wythoffian uniform polytopes, generated by marking one or more nodes of the D7 Coxeter-Dynkin diagram. Of these, 63 (2×32−1) are repeated from the B7 family and 32 are unique to this family, listed below. Bowers names and acronym are given for cross-referencing.
See also list of D7 polytopes for Coxeter plane graphs of these polytopes.
| D7 uniform polytopes | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| # | Coxeter diagram | Names | Base point (Alternately signed) | Element counts | |||||||
| 6 | 5 | 4 | 3 | 2 | 1 | 0 | |||||
| 1 | 7-cube demihepteract (hesa) | (1,1,1,1,1,1,1) | 78 | 532 | 1624 | 2800 | 2240 | 672 | 64 | ||
| 2 | cantic 7-cube truncated demihepteract (thesa) | (1,1,3,3,3,3,3) | 142 | 1428 | 5656 | 11760 | 13440 | 7392 | 1344 | ||
| 3 | runcic 7-cube small rhombated demihepteract (sirhesa) | (1,1,1,3,3,3,3) | 16800 | 2240 | |||||||
| 4 | steric 7-cube small prismated demihepteract (sphosa) | (1,1,1,1,3,3,3) | 20160 | 2240 | |||||||
| 5 | pentic 7-cube small cellated demihepteract (sochesa) | (1,1,1,1,1,3,3) | 13440 | 1344 | |||||||
| 6 | hexic 7-cube small terated demihepteract (suthesa) | (1,1,1,1,1,1,3) | 4704 | 448 | |||||||
| 7 | runcicantic 7-cube great rhombated demihepteract (Girhesa) | (1,1,3,5,5,5,5) | 23520 | 6720 | |||||||
| 8 | stericantic 7-cube prismatotruncated demihepteract (pothesa) | (1,1,3,3,5,5,5) | 73920 | 13440 | |||||||
| 9 | steriruncic 7-cube prismatorhomated demihepteract (prohesa) | (1,1,1,3,5,5,5) | 40320 | 8960 | |||||||
| 10 | penticantic 7-cube cellitruncated demihepteract (cothesa) | (1,1,3,3,3,5,5) | 87360 | 13440 | |||||||
| 11 | pentiruncic 7-cube cellirhombated demihepteract (crohesa) | (1,1,1,3,3,5,5) | 87360 | 13440 | |||||||
| 12 | pentisteric 7-cube celliprismated demihepteract (caphesa) | (1,1,1,1,3,5,5) | 40320 | 6720 | |||||||
| 13 | hexicantic 7-cube tericantic demihepteract (tuthesa) | (1,1,3,3,3,3,5) | 43680 | 6720 | |||||||
| 14 | hexiruncic 7-cube terirhombated demihepteract (turhesa) | (1,1,1,3,3,3,5) | 67200 | 8960 | |||||||
| 15 | hexisteric 7-cube teriprismated demihepteract (tuphesa) | (1,1,1,1,3,3,5) | 53760 | 6720 | |||||||
| 16 | hexipentic 7-cube tericellated demihepteract (tuchesa) | (1,1,1,1,1,3,5) | 21504 | 2688 | |||||||
| 17 | steriruncicantic 7-cube great prismated demihepteract (Gephosa) | (1,1,3,5,7,7,7) | 94080 | 26880 | |||||||
| 18 | pentiruncicantic 7-cube celligreatorhombated demihepteract (cagrohesa) | (1,1,3,5,5,7,7) | 181440 | 40320 | |||||||
| 19 | pentistericantic 7-cube celliprismatotruncated demihepteract (capthesa) | (1,1,3,3,5,7,7) | 181440 | 40320 | |||||||
| 20 | pentisteriruncic 7-cube celliprismatorhombated demihepteract (coprahesa) | (1,1,1,3,5,7,7) | 120960 | 26880 | |||||||
| 21 | hexiruncicantic 7-cube terigreatorhombated demihepteract (tugrohesa) | (1,1,3,5,5,5,7) | 120960 | 26880 | |||||||
| 22 | hexistericantic 7-cube teriprismatotruncated demihepteract (tupthesa) | (1,1,3,3,5,5,7) | 221760 | 40320 | |||||||
| 23 | hexisteriruncic 7-cube teriprismatorhombated demihepteract (tuprohesa) | (1,1,1,3,5,5,7) | 134400 | 26880 | |||||||
| 24 | hexipenticantic 7-cube teriCellitruncated demihepteract (tucothesa) | (1,1,3,3,3,5,7) | 147840 | 26880 | |||||||
| 25 | hexipentiruncic 7-cube tericellirhombated demihepteract (tucrohesa) | (1,1,1,3,3,5,7) | 161280 | 26880 | |||||||
| 26 | hexipentisteric 7-cube tericelliprismated demihepteract (tucophesa) | (1,1,1,1,3,5,7) | 80640 | 13440 | |||||||
| 27 | pentisteriruncicantic 7-cube great cellated demihepteract (gochesa) | (1,1,3,5,7,9,9) | 282240 | 80640 | |||||||
| 28 | hexisteriruncicantic 7-cube terigreatoprimated demihepteract (tugphesa) | (1,1,3,5,7,7,9) | 322560 | 80640 | |||||||
| 29 | hexipentiruncicantic 7-cube tericelligreatorhombated demihepteract (tucagrohesa) | (1,1,3,5,5,7,9) | 322560 | 80640 | |||||||
| 30 | hexipentistericantic 7-cube tericelliprismatotruncated demihepteract (tucpathesa) | (1,1,3,3,5,7,9) | 362880 | 80640 | |||||||
| 31 | hexipentisteriruncic 7-cube tericellprismatorhombated demihepteract (tucprohesa) | (1,1,1,3,5,7,9) | 241920 | 53760 | |||||||
| 32 | hexipentisteriruncicantic 7-cube great terated demihepteract (guthesa) | (1,1,3,5,7,9,11) | 564480 | 161280 | |||||||
The E7 family
The E7 Coxeter group has order 2,903,040.
There are 127 forms based on all permutations of the Coxeter-Dynkin diagrams with one or more rings.
See also a list of E7 polytopes for symmetric Coxeter plane graphs of these polytopes.
| E7 uniform polytopes | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| # | Coxeter-Dynkin diagram Schläfli symbol | Names | Element counts | ||||||||
| 6 | 5 | 4 | 3 | 2 | 1 | 0 | |||||
| 1 | 231 (laq) | 632 | 4788 | 16128 | 20160 | 10080 | 2016 | 126 | |||
| 2 | Rectified 231 (rolaq) | 758 | 10332 | 47880 | 100800 | 90720 | 30240 | 2016 | |||
| 3 | Rectified 132 (rolin) | 758 | 12348 | 72072 | 191520 | 241920 | 120960 | 10080 | |||
| 4 | 132 (lin) | 182 | 4284 | 23688 | 50400 | 40320 | 10080 | 576 | |||
| 5 | Birectified 321 (branq) | 758 | 12348 | 68040 | 161280 | 161280 | 60480 | 4032 | |||
| 6 | Rectified 321 (ranq) | 758 | 44352 | 70560 | 48384 | 11592 | 12096 | 756 | |||
| 7 | 321 (naq) | 702 | 6048 | 12096 | 10080 | 4032 | 756 | 56 | |||
| 8 | Truncated 231 (talq) | 758 | 10332 | 47880 | 100800 | 90720 | 32256 | 4032 | |||
| 9 | Cantellated 231 (sirlaq) | 131040 | 20160 | ||||||||
| 10 | Bitruncated 231 (botlaq) | 30240 | |||||||||
| 11 | small demified 231 (shilq) | 2774 | 22428 | 78120 | 151200 | 131040 | 42336 | 4032 | |||
| 12 | demirectified 231 (hirlaq) | 12096 | |||||||||
| 13 | truncated 132 (tolin) | 20160 | |||||||||
| 14 | small demiprismated 231 (shiplaq) | 20160 | |||||||||
| 15 | birectified 132 (berlin) | 758 | 22428 | 142632 | 403200 | 544320 | 302400 | 40320 | |||
| 16 | tritruncated 321 (totanq) | 40320 | |||||||||
| 17 | demibirectified 321 (hobranq) | 20160 | |||||||||
| 18 | small cellated 231 (scalq) | 7560 | |||||||||
| 19 | small biprismated 231 (sobpalq) | 30240 | |||||||||
| 20 | small birhombated 321 (sabranq) | 60480 | |||||||||
| 21 | demirectified 321 (harnaq) | 12096 | |||||||||
| 22 | bitruncated 321 (botnaq) | 12096 | |||||||||
| 23 | small terated 321 (stanq) | 1512 | |||||||||
| 24 | small demicellated 321 (shocanq) | 12096 | |||||||||
| 25 | small prismated 321 (spanq) | 40320 | |||||||||
| 26 | small demified 321 (shanq) | 4032 | |||||||||
| 27 | small rhombated 321 (sranq) | 12096 | |||||||||
| 28 | Truncated 321 (tanq) | 758 | 11592 | 48384 | 70560 | 44352 | 12852 | 1512 | |||
| 29 | great rhombated 231 (girlaq) | 60480 | |||||||||
| 30 | demitruncated 231 (hotlaq) | 24192 | |||||||||
| 31 | small demirhombated 231 (sherlaq) | 60480 | |||||||||
| 32 | demibitruncated 231 (hobtalq) | 60480 | |||||||||
| 33 | demiprismated 231 (hiptalq) | 80640 | |||||||||
| 34 | demiprismatorhombated 231 (hiprolaq) | 120960 | |||||||||
| 35 | bitruncated 132 (batlin) | 120960 | |||||||||
| 36 | small prismated 231 (spalq) | 80640 | |||||||||
| 37 | small rhombated 132 (sirlin) | 120960 | |||||||||
| 38 | tritruncated 231 (tatilq) | 80640 | |||||||||
| 39 | cellitruncated 231 (catalaq) | 60480 | |||||||||
| 40 | cellirhombated 231 (crilq) | 362880 | |||||||||
| 41 | biprismatotruncated 231 (biptalq) | 181440 | |||||||||
| 42 | small prismated 132 (seplin) | 60480 | |||||||||
| 43 | small biprismated 321 (sabipnaq) | 120960 | |||||||||
| 44 | small demibirhombated 321 (shobranq) | 120960 | |||||||||
| 45 | cellidemiprismated 231 (chaplaq) | 60480 | |||||||||
| 46 | demibiprismatotruncated 321 (hobpotanq) | 120960 | |||||||||
| 47 | great birhombated 321 (gobranq) | 120960 | |||||||||
| 48 | demibitruncated 321 (hobtanq) | 60480 | |||||||||
| 49 | teritruncated 231 (totalq) | 24192 | |||||||||
| 50 | terirhombated 231 (trilq) | 120960 | |||||||||
| 51 | demicelliprismated 321 (hicpanq) | 120960 | |||||||||
| 52 | small teridemified 231 (sethalq) | 24192 | |||||||||
| 53 | small cellated 321 (scanq) | 60480 | |||||||||
| 54 | demiprismated 321 (hipnaq) | 80640 | |||||||||
| 55 | terirhombated 321 (tranq) | 60480 | |||||||||
| 56 | demicellirhombated 321 (hocranq) | 120960 | |||||||||
| 57 | prismatorhombated 321 (pranq) | 120960 | |||||||||
| 58 | small demirhombated 321 (sharnaq) | 60480 | |||||||||
| 59 | teritruncated 321 (tetanq) | 15120 | |||||||||
| 60 | demicellitruncated 321 (hictanq) | 60480 | |||||||||
| 61 | prismatotruncated 321 (potanq) | 120960 | |||||||||
| 62 | demitruncated 321 (hotnaq) | 24192 | |||||||||
| 63 | great rhombated 321 (granq) | 24192 | |||||||||
| 64 | great demified 231 (gahlaq) | 120960 | |||||||||
| 65 | great demiprismated 231 (gahplaq) | 241920 | |||||||||
| 66 | prismatotruncated 231 (potlaq) | 241920 | |||||||||
| 67 | prismatorhombated 231 (prolaq) | 241920 | |||||||||
| 68 | great rhombated 132 (girlin) | 241920 | |||||||||
| 69 | celligreatorhombated 231 (cagrilq) | 362880 | |||||||||
| 70 | cellidemitruncated 231 (chotalq) | 241920 | |||||||||
| 71 | prismatotruncated 132 (patlin) | 362880 | |||||||||
| 72 | biprismatorhombated 321 (bipirnaq) | 362880 | |||||||||
| 73 | tritruncated 132 (tatlin) | 241920 | |||||||||
| 74 | cellidemiprismatorhombated 231 (chopralq) | 362880 | |||||||||
| 75 | great demibiprismated 321 (ghobipnaq) | 362880 | |||||||||
| 76 | celliprismated 231 (caplaq) | 241920 | |||||||||
| 77 | biprismatotruncated 321 (boptanq) | 362880 | |||||||||
| 78 | great trirhombated 231 (gatralaq) | 241920 | |||||||||
| 79 | terigreatorhombated 231 (togrilq) | 241920 | |||||||||
| 80 | teridemitruncated 231 (thotalq) | 120960 | |||||||||
| 81 | teridemirhombated 231 (thorlaq) | 241920 | |||||||||
| 82 | celliprismated 321 (capnaq) | 241920 | |||||||||
| 83 | teridemiprismatotruncated 231 (thoptalq) | 241920 | |||||||||
| 84 | teriprismatorhombated 321 (tapronaq) | 362880 | |||||||||
| 85 | demicelliprismatorhombated 321 (hacpranq) | 362880 | |||||||||
| 86 | teriprismated 231 (toplaq) | 241920 | |||||||||
| 87 | cellirhombated 321 (cranq) | 362880 | |||||||||
| 88 | demiprismatorhombated 321 (hapranq) | 241920 | |||||||||
| 89 | tericellitruncated 231 (tectalq) | 120960 | |||||||||
| 90 | teriprismatotruncated 321 (toptanq) | 362880 | |||||||||
| 91 | demicelliprismatotruncated 321 (hecpotanq) | 362880 | |||||||||
| 92 | teridemitruncated 321 (thotanq) | 120960 | |||||||||
| 93 | cellitruncated 321 (catnaq) | 241920 | |||||||||
| 94 | demiprismatotruncated 321 (hiptanq) | 241920 | |||||||||
| 95 | terigreatorhombated 321 (tagranq) | 120960 | |||||||||
| 96 | demicelligreatorhombated 321 (hicgarnq) | 241920 | |||||||||
| 97 | great prismated 321 (gopanq) | 241920 | |||||||||
| 98 | great demirhombated 321 (gahranq) | 120960 | |||||||||
| 99 | great prismated 231 (gopalq) | 483840 | |||||||||
| 100 | great cellidemified 231 (gechalq) | 725760 | |||||||||
| 101 | great birhombated 132 (gebrolin) | 725760 | |||||||||
| 102 | prismatorhombated 132 (prolin) | 725760 | |||||||||
| 103 | celliprismatorhombated 231 (caprolaq) | 725760 | |||||||||
| 104 | great biprismated 231 (gobpalq) | 725760 | |||||||||
| 105 | tericelliprismated 321 (ticpanq) | 483840 | |||||||||
| 106 | teridemigreatoprismated 231 (thegpalq) | 725760 | |||||||||
| 107 | teriprismatotruncated 231 (teptalq) | 725760 | |||||||||
| 108 | teriprismatorhombated 231 (topralq) | 725760 | |||||||||
| 109 | cellipriemsatorhombated 321 (copranq) | 725760 | |||||||||
| 110 | tericelligreatorhombated 231 (tecgrolaq) | 725760 | |||||||||
| 111 | tericellitruncated 321 (tectanq) | 483840 | |||||||||
| 112 | teridemiprismatotruncated 321 (thoptanq) | 725760 | |||||||||
| 113 | celliprismatotruncated 321 (coptanq) | 725760 | |||||||||
| 114 | teridemicelligreatorhombated 321 (thocgranq) | 483840 | |||||||||
| 115 | terigreatoprismated 321 (tagpanq) | 725760 | |||||||||
| 116 | great demicellated 321 (gahcnaq) | 725760 | |||||||||
| 117 | tericelliprismated laq (tecpalq) | 483840 | |||||||||
| 118 | celligreatorhombated 321 (cogranq) | 725760 | |||||||||
| 119 | great demified 321 (gahnq) | 483840 | |||||||||
| 120 | great cellated 231 (gocalq) | 1451520 | |||||||||
| 121 | terigreatoprismated 231 (tegpalq) | 1451520 | |||||||||
| 122 | tericelliprismatotruncated 321 (tecpotniq) | 1451520 | |||||||||
| 123 | tericellidemigreatoprismated 231 (techogaplaq) | 1451520 | |||||||||
| 124 | tericelligreatorhombated 321 (tacgarnq) | 1451520 | |||||||||
| 125 | tericelliprismatorhombated 231 (tecprolaq) | 1451520 | |||||||||
| 126 | great cellated 321 (gocanq) | 1451520 | |||||||||
| 127 | great terated 321 (gotanq) | 2903040 | |||||||||
Regular and uniform honeycombs
There are five fundamental affine Coxeter groups and sixteen prismatic groups that generate regular and uniform tessellations in 6-space:
| # | Coxeter group | Coxeter diagram | Forms | |
|---|---|---|---|---|
| 1 | [3[7]] | 17 | ||
| 2 | [4,34,4] | 71 | ||
| 3 | h[4,34,4] [4,33,31,1] | 95 (32 new) | ||
| 4 | q[4,34,4] [31,1,32,31,1] | 41 (6 new) | ||
| 5 | [32,2,2] | 39 | ||
Regular and uniform tessellations include:
- , 17 forms
- Uniform 6-simplex honeycomb: {3[7]}









- Uniform Cyclotruncated 6-simplex honeycomb: t0,1{3[7]}









- Uniform Omnitruncated 6-simplex honeycomb: t0,1,2,3,4,5,6,7{3[7]}









- Uniform 6-simplex honeycomb: {3[7]}
- , [4,34,4], 71 forms
- Regular 6-cube honeycomb, represented by symbols {4,34,4},













- Regular 6-cube honeycomb, represented by symbols {4,34,4},
- , [31,1,33,4], 95 forms, 64 shared with , 32 new
- Uniform 6-demicube honeycomb, represented by symbols h{4,34,4} = {31,1,33,4},












= 










- Uniform 6-demicube honeycomb, represented by symbols h{4,34,4} = {31,1,33,4},
- , [31,1,32,31,1], 41 unique ringed permutations, most shared with and , and 6 are new. Coxeter calls the first one a quarter 6-cubic honeycomb.








= 




















= 




















= 




















= 




















= 




















= 












- : [32,2,2], 39 forms
- Uniform 222 honeycomb: represented by symbols {3,3,32,2},









- Uniform t4(222) honeycomb: 4r{3,3,32,2},









- Uniform 0222 honeycomb: {32,2,2},









- Uniform t2(0222) honeycomb: 2r{32,2,2},









- Uniform 222 honeycomb: represented by symbols {3,3,32,2},
| # | Coxeter group | Coxeter-Dynkin diagram | |
|---|---|---|---|
| 1 | x | [3[6],2,∞] | |
| 2 | x | [4,3,31,1,2,∞] | |
| 3 | x | [4,33,4,2,∞] | |
| 4 | x | [31,1,3,31,1,2,∞] | |
| 5 | xx | [3[5],2,∞,2,∞,2,∞] | |
| 6 | xx | [4,3,31,1,2,∞,2,∞] | |
| 7 | xx | [4,3,3,4,2,∞,2,∞] | |
| 8 | xx | [31,1,1,1,2,∞,2,∞] | |
| 9 | xx | [3,4,3,3,2,∞,2,∞] | |
| 10 | xxx | [4,3,4,2,∞,2,∞,2,∞] | |
| 11 | xxx | [4,31,1,2,∞,2,∞,2,∞] | |
| 12 | xxx | [3[4],2,∞,2,∞,2,∞] | |
| 13 | xxxx | [4,4,2,∞,2,∞,2,∞,2,∞] | |
| 14 | xxxx | [6,3,2,∞,2,∞,2,∞,2,∞] | |
| 15 | xxxx | [3[3],2,∞,2,∞,2,∞,2,∞] | |
| 16 | xxxxx | [∞,2,∞,2,∞,2,∞,2,∞] | |
Regular and uniform hyperbolic honeycombs
There are no compact hyperbolic Coxeter groups of rank 7, groups that can generate honeycombs with all finite facets, and a finite vertex figure. However, there are 3 paracompact hyperbolic Coxeter groups of rank 7, each generating uniform honeycombs in 6-space as permutations of rings of the Coxeter diagrams.
| = [3,3[6]]: | = [31,1,3,32,1]: | = [4,3,3,32,1]: |
Notes on the Wythoff construction for the uniform 7-polytopes
The reflective 7-dimensional uniform polytopes are constructed through a Wythoff construction process, and represented by a Coxeter-Dynkin diagram, where each node represents a mirror. An active mirror is represented by a ringed node. Each combination of active mirrors generates a unique uniform polytope. Uniform polytopes are named in relation to the regular polytopes in each family. Some families have two regular constructors and thus may be named in two equally valid ways.
Here are the primary operators available for constructing and naming the uniform 7-polytopes.
The prismatic forms and bifurcating graphs can use the same truncation indexing notation, but require an explicit numbering system on the nodes for clarity.
| Operation | Extended Schläfli symbol | Coxeter- Dynkin diagram | Description |
|---|---|---|---|
| Parent | t0{p,q,r,s,t,u} | Any regular 7-polytope | |
| Rectified | t1{p,q,r,s,t,u} | The edges are fully truncated into single points. The 7-polytope now has the combined faces of the parent and dual. | |
| Birectified | t2{p,q,r,s,t,u} | Birectification reduces cells to their duals. | |
| Truncated | t0,1{p,q,r,s,t,u} | Each original vertex is cut off, with a new face filling the gap. Truncation has a degree of freedom, which has one solution that creates a uniform truncated 7-polytope. The 7-polytope has its original faces doubled in sides, and contains the faces of the dual. | |
| Bitruncated | t1,2{p,q,r,s,t,u} | Bitrunction transforms cells to their dual truncation. | |
| Tritruncated | t2,3{p,q,r,s,t,u} | Tritruncation transforms 4-faces to their dual truncation. | |
| Cantellated | t0,2{p,q,r,s,t,u} | In addition to vertex truncation, each original edge is beveled with new rectangular faces appearing in their place. A uniform cantellation is half way between both the parent and dual forms. | |
| Bicantellated | t1,3{p,q,r,s,t,u} | In addition to vertex truncation, each original edge is beveled with new rectangular faces appearing in their place. A uniform cantellation is half way between both the parent and dual forms. | |
| Runcinated | t0,3{p,q,r,s,t,u} | Runcination reduces cells and creates new cells at the vertices and edges. | |
| Biruncinated | t1,4{p,q,r,s,t,u} | Runcination reduces cells and creates new cells at the vertices and edges. | |
| Stericated | t0,4{p,q,r,s,t,u} | Sterication reduces 4-faces and creates new 4-faces at the vertices, edges, and faces in the gaps. | |
| Pentellated | t0,5{p,q,r,s,t,u} | Pentellation reduces 5-faces and creates new 5-faces at the vertices, edges, faces, and cells in the gaps. | |
| Hexicated | t0,6{p,q,r,s,t,u} | Hexication reduces 6-faces and creates new 6-faces at the vertices, edges, faces, cells, and 4-faces in the gaps. (expansion operation for 7-polytopes) | |
| Omnitruncated | t0,1,2,3,4,5,6{p,q,r,s,t,u} | All six operators, truncation, cantellation, runcination, sterication, pentellation, and hexication are applied. |
References
- T. Gosset: On the Regular and Semi-Regular Figures in Space of n Dimensions, Messenger of Mathematics, Macmillan, 1900
- A. Boole Stott: Geometrical deduction of semiregular from regular polytopes and space fillings, Verhandelingen of the Koninklijke academy van Wetenschappen width unit Amsterdam, Eerste Sectie 11,1, Amsterdam, 1910
- H.S.M. Coxeter:
- H.S.M. Coxeter, M.S. Longuet-Higgins und J.C.P. Miller: Uniform Polyhedra, Philosophical Transactions of the Royal Society of London, Londne, 1954
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN978-0-471-01003-6http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
- Klitzing, Richard. "7D uniform polytopes (polyexa)".
External links
- Polytope names
- Polytopes of Various Dimensions
- Multi-dimensional Glossary
- Glossary for hyperspace, George Olshevsky.