제복7폴리토프

Uniform 7-polytope
세 개의 정규 및 관련 균일한 폴리토피 그래프
7-simplex t0.svg
7시 15분
7-simplex t1.svg
수정 7-심플렉스
7-simplex t01.svg
잘린 7-심플렉스
7-simplex t02.svg
7-심플렉스
7-simplex t03.svg
런케이티드 7-심플렉스
7-simplex t04.svg
스테로이티드 7-심플렉스
7-simplex t05.svg
펜텔 처리된 7-심
7-simplex t06.svg
7단백질
7-cube t6.svg
7형식
7-cube t56.svg
잘린 7정맥
7-cube t5.svg
수정7정맥류
7-cube t46.svg
7정음
7-cube t36.svg
7정맥류
7-cube t26.svg
스테리코티드 7형식
7-cube t16.svg
오순절 7형식
7-cube t06.svg
난독성 7큐브
7-cube t05.svg
펜텔레이트 7큐브
7-cube t04.svg
스테리커티드 7-큐브
7-cube t02.svg
캔터키드 7큐브
7-cube t03.svg
런케이티드 7큐브
7-cube t0.svg
7시 15분
7-cube t01.svg
잘린 7-큐브
7-cube t1.svg
수정 7-큐브
7-demicube t0 D7.svg
7데미큐브
7-demicube t01 D7.svg
캔틱 7-큐브
7-demicube t02 D7.svg
룬치 7-큐브
7-demicube t03 D7.svg
스테릭 7-큐브
7-demicube t04 D7.svg
펜티크 7-큐브
7-demicube t05 D7.svg
흑색 7큐브
E7 graph.svg
321
Gosset 2 31 polytope.svg
231
Gosset 1 32 petrie.svg
132

7차원 기하학에서 7폴리토프는 6폴리토프 면에 의해 포함된 폴리토프다. 각각의 5폴리토프 능선은 정확히 두 개의 6폴리토프 에 의해 공유된다.

균일 7-폴리토프정점에 대칭 그룹이 전이적이고 정면이 균일한 6-폴리토프인 것을 말한다.

일반 7폴리톱

일반 7폴리탑은 각 4-표면 주위에 u가 {p,q,r,s,t,u}인 슐레플리 기호 {p,q,r,s,t}에 의해 표현된다.

이러한 볼록한 정규 7폴리탑은 정확히 세 가지가 있다.

  1. {3,3,3,3,3,3} - 7-145x
  2. {4,3,3,3,3} - 7-118
  3. {3,3,3,3,3,4} - 7-정식

비콘벡스 정규 7폴리탑은 없다.

특성.

주어진 7 폴리토프의 위상은 베티 번호비틀림 계수로 정의된다.[1]

다면체의 특성화에 사용되는 오일러 특성의 값은 그 기본 토폴로지가 무엇이든 더 높은 차원으로 유용하게 일반화하지 않는다. 보다 높은 차원으로 서로 다른 위상들을 신뢰성 있게 구별하기 위한 오일러 특성의 이러한 결여는 보다 정교한 베티 숫자의 발견으로 이어졌다.[1]

마찬가지로 다면체의 방향성 개념은 토로이드성 다면체의 표면 비틀림 특성을 나타내기에는 불충분하며, 이는 비틀림 계수를 사용하게 되었다.[1]

기본 Coxeter 그룹에 의한 균일한 7-폴리토프

반사 대칭이 있는 균일한 7 폴리탑은 Coxeter-Dynkin 다이어그램의 링 순열로 대표되는 4개의 Coxeter 그룹에 의해 생성될 수 있다.

# 콕시터군 정규 및 반정형 균일수
1 A을7 [36] CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png 71
2 B7 [4,35] CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png 127 + 32
3 D7 [33,1,1] CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png 95 (0 고유)
4 E7 [33,2,1] CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png 127

A가족7

A7 계열의 대칭은 순서 40320 (8 요인)이다.

하나 이상의 링이 있는 Coxeter-Dynkin 다이어그램의 모든 순열에 기초한 71개의 (64+8-1) 양식이 있다. 71명 모두가 아래에 열거되어 있다. Norman Johnson의 잘린 이름이 주어진다. 상호 참조를 위해 보우어 이름과 약어도 제공된다.

이러한 폴리토페스의 대칭 Coxeter 평면 그래프는 A7 폴리토페스의 목록을 참조하십시오.

The B7 family

The B7 family has symmetry of order 645120 (7 factorial x 27).

There are 127 forms based on all permutations of the Coxeter-Dynkin diagrams with one or more rings. Johnson and Bowers names.

See also a list of B7 polytopes for symmetric Coxeter plane graphs of these polytopes.

The D7 family

The D7 family has symmetry of order 322560 (7 factorial x 26).

This family has 3×32−1=95 Wythoffian uniform polytopes, generated by marking one or more nodes of the D7 Coxeter-Dynkin diagram. Of these, 63 (2×32−1) are repeated from the B7 family and 32 are unique to this family, listed below. Bowers names and acronym are given for cross-referencing.

See also list of D7 polytopes for Coxeter plane graphs of these polytopes.

The E7 family

The E7 Coxeter group has order 2,903,040.

There are 127 forms based on all permutations of the Coxeter-Dynkin diagrams with one or more rings.

See also a list of E7 polytopes for symmetric Coxeter plane graphs of these polytopes.

Regular and uniform honeycombs

Coxeter-Dynkin diagram correspondences between families and higher symmetry within diagrams. Nodes of the same color in each row represent identical mirrors. Black nodes are not active in the correspondence.

There are five fundamental affine Coxeter groups and sixteen prismatic groups that generate regular and uniform tessellations in 6-space:

# Coxeter group Coxeter diagram Forms
1 [3[7]] CDel branch.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.png 17
2 [4,34,4] CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png 71
3 h[4,34,4]
[4,33,31,1]
CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png 95 (32 new)
4 q[4,34,4]
[31,1,32,31,1]
CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png 41 (6 new)
5 [32,2,2] CDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png 39

Regular and uniform tessellations include:

  • , 17 forms
  • , [4,34,4], 71 forms
  • , [31,1,33,4], 95 forms, 64 shared with , 32 new
  • , [31,1,32,31,1], 41 unique ringed permutations, most shared with and , and 6 are new. Coxeter calls the first one a quarter 6-cubic honeycomb.
    • CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes 10lu.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h1.png
    • CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes 10lu.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h1.png
    • CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes 10lu.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h1.png
    • CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes 10lu.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h1.png
    • CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel nodes 10lu.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h1.png
    • CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel nodes 10lu.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h1.png
  • : [32,2,2], 39 forms
    • Uniform 222 honeycomb: represented by symbols {3,3,32,2}, CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.png
    • Uniform t4(222) honeycomb: 4r{3,3,32,2}, CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes 11.png
    • Uniform 0222 honeycomb: {32,2,2}, CDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
    • Uniform t2(0222) honeycomb: 2r{32,2,2}, CDel nodes 11.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
Prismatic groups
# Coxeter group Coxeter-Dynkin diagram
1 x [3[6],2,∞] CDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.png
2 x [4,3,31,1,2,∞] CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.png
3 x [4,33,4,2,∞] CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.png
4 x [31,1,3,31,1,2,∞] CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.png
5 xx [3[5],2,∞,2,∞,2,∞] CDel branch.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.png
6 xx [4,3,31,1,2,∞,2,∞] CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.png
7 xx [4,3,3,4,2,∞,2,∞] CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.png
8 xx [31,1,1,1,2,∞,2,∞] CDel nodes.pngCDel split2.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.png
9 xx [3,4,3,3,2,∞,2,∞] CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.png
10 xxx [4,3,4,2,∞,2,∞,2,∞] CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.png
11 xxx [4,31,1,2,∞,2,∞,2,∞] CDel nodes.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.png
12 xxx [3[4],2,∞,2,∞,2,∞] CDel branch.pngCDel 3ab.pngCDel branch.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.png
13 xxxx [4,4,2,∞,2,∞,2,∞,2,∞] CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.png
14 xxxx [6,3,2,∞,2,∞,2,∞,2,∞] CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.png
15 xxxx [3[3],2,∞,2,∞,2,∞,2,∞] CDel node.pngCDel split1.pngCDel branch.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.png
16 xxxxx [∞,2,∞,2,∞,2,∞,2,∞] CDel node.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.png

Regular and uniform hyperbolic honeycombs

There are no compact hyperbolic Coxeter groups of rank 7, groups that can generate honeycombs with all finite facets, and a finite vertex figure. However, there are 3 paracompact hyperbolic Coxeter groups of rank 7, each generating uniform honeycombs in 6-space as permutations of rings of the Coxeter diagrams.

= [3,3[6]]:
CDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.png
= [31,1,3,32,1]:
CDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
= [4,3,3,32,1]:
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 4a.pngCDel nodea.png

Notes on the Wythoff construction for the uniform 7-polytopes

The reflective 7-dimensional uniform polytopes are constructed through a Wythoff construction process, and represented by a Coxeter-Dynkin diagram, where each node represents a mirror. An active mirror is represented by a ringed node. Each combination of active mirrors generates a unique uniform polytope. Uniform polytopes are named in relation to the regular polytopes in each family. Some families have two regular constructors and thus may be named in two equally valid ways.

Here are the primary operators available for constructing and naming the uniform 7-polytopes.

The prismatic forms and bifurcating graphs can use the same truncation indexing notation, but require an explicit numbering system on the nodes for clarity.

Operation Extended
Schläfli symbol
Coxeter-
Dynkin
diagram
Description
Parent t0{p,q,r,s,t,u} CDel node 1.pngCDel p.pngCDel node.pngCDel q.pngCDel node.pngCDel r.pngCDel node.pngCDel s.pngCDel node.pngCDel t.pngCDel node.pngCDel u.pngCDel node.png Any regular 7-polytope
Rectified t1{p,q,r,s,t,u} CDel node.pngCDel p.pngCDel node 1.pngCDel q.pngCDel node.pngCDel r.pngCDel node.pngCDel s.pngCDel node.pngCDel t.pngCDel node.pngCDel u.pngCDel node.png The edges are fully truncated into single points. The 7-polytope now has the combined faces of the parent and dual.
Birectified t2{p,q,r,s,t,u} CDel node.pngCDel p.pngCDel node.pngCDel q.pngCDel node 1.pngCDel r.pngCDel node.pngCDel s.pngCDel node.pngCDel t.pngCDel node.pngCDel u.pngCDel node.png Birectification reduces cells to their duals.
Truncated t0,1{p,q,r,s,t,u} CDel node 1.pngCDel p.pngCDel node 1.pngCDel q.pngCDel node.pngCDel r.pngCDel node.pngCDel s.pngCDel node.pngCDel t.pngCDel node.pngCDel u.pngCDel node.png Each original vertex is cut off, with a new face filling the gap. Truncation has a degree of freedom, which has one solution that creates a uniform truncated 7-polytope. The 7-polytope has its original faces doubled in sides, and contains the faces of the dual.
Cube truncation sequence.svg
Bitruncated t1,2{p,q,r,s,t,u} CDel node.pngCDel p.pngCDel node 1.pngCDel q.pngCDel node 1.pngCDel r.pngCDel node.pngCDel s.pngCDel node.pngCDel t.pngCDel node.pngCDel u.pngCDel node.png Bitrunction transforms cells to their dual truncation.
Tritruncated t2,3{p,q,r,s,t,u} CDel node.pngCDel p.pngCDel node.pngCDel q.pngCDel node 1.pngCDel r.pngCDel node 1.pngCDel s.pngCDel node.pngCDel t.pngCDel node.pngCDel u.pngCDel node.png Tritruncation transforms 4-faces to their dual truncation.
Cantellated t0,2{p,q,r,s,t,u} CDel node 1.pngCDel p.pngCDel node.pngCDel q.pngCDel node 1.pngCDel r.pngCDel node.pngCDel s.pngCDel node.pngCDel t.pngCDel node.pngCDel u.pngCDel node.png In addition to vertex truncation, each original edge is beveled with new rectangular faces appearing in their place. A uniform cantellation is half way between both the parent and dual forms.
Cube cantellation sequence.svg
Bicantellated t1,3{p,q,r,s,t,u} CDel node.pngCDel p.pngCDel node 1.pngCDel q.pngCDel node.pngCDel r.pngCDel node 1.pngCDel s.pngCDel node.pngCDel t.pngCDel node.pngCDel u.pngCDel node.png In addition to vertex truncation, each original edge is beveled with new rectangular faces appearing in their place. A uniform cantellation is half way between both the parent and dual forms.
Runcinated t0,3{p,q,r,s,t,u} CDel node 1.pngCDel p.pngCDel node.pngCDel q.pngCDel node.pngCDel r.pngCDel node 1.pngCDel s.pngCDel node.pngCDel t.pngCDel node.pngCDel u.pngCDel node.png Runcination reduces cells and creates new cells at the vertices and edges.
Biruncinated t1,4{p,q,r,s,t,u} CDel node.pngCDel p.pngCDel node 1.pngCDel q.pngCDel node.pngCDel r.pngCDel node.pngCDel s.pngCDel node 1.pngCDel t.pngCDel node.pngCDel u.pngCDel node.png Runcination reduces cells and creates new cells at the vertices and edges.
Stericated t0,4{p,q,r,s,t,u} CDel node 1.pngCDel p.pngCDel node.pngCDel q.pngCDel node.pngCDel r.pngCDel node.pngCDel s.pngCDel node 1.pngCDel t.pngCDel node.pngCDel u.pngCDel node.png Sterication reduces 4-faces and creates new 4-faces at the vertices, edges, and faces in the gaps.
Pentellated t0,5{p,q,r,s,t,u} CDel node 1.pngCDel p.pngCDel node.pngCDel q.pngCDel node.pngCDel r.pngCDel node.pngCDel s.pngCDel node.pngCDel t.pngCDel node 1.pngCDel u.pngCDel node.png Pentellation reduces 5-faces and creates new 5-faces at the vertices, edges, faces, and cells in the gaps.
Hexicated t0,6{p,q,r,s,t,u} CDel node 1.pngCDel p.pngCDel node.pngCDel q.pngCDel node.pngCDel r.pngCDel node.pngCDel s.pngCDel node.pngCDel t.pngCDel node.pngCDel u.pngCDel node 1.png Hexication reduces 6-faces and creates new 6-faces at the vertices, edges, faces, cells, and 4-faces in the gaps. (expansion operation for 7-polytopes)
Omnitruncated t0,1,2,3,4,5,6{p,q,r,s,t,u} CDel node 1.pngCDel p.pngCDel node 1.pngCDel q.pngCDel node 1.pngCDel r.pngCDel node 1.pngCDel s.pngCDel node 1.pngCDel t.pngCDel node 1.pngCDel u.pngCDel node 1.png All six operators, truncation, cantellation, runcination, sterication, pentellation, and hexication are applied.

References

  1. ^ a b c Richeson, D.; Euler's Gem: The Polyhedron Formula and the Birth of Topoplogy, Princeton, 2008.
  • T. Gosset: On the Regular and Semi-Regular Figures in Space of n Dimensions, Messenger of Mathematics, Macmillan, 1900
  • A. Boole Stott: Geometrical deduction of semiregular from regular polytopes and space fillings, Verhandelingen of the Koninklijke academy van Wetenschappen width unit Amsterdam, Eerste Sectie 11,1, Amsterdam, 1910
  • H.S.M. Coxeter:
    • H.S.M. Coxeter, M.S. Longuet-Higgins und J.C.P. Miller: Uniform Polyhedra, Philosophical Transactions of the Royal Society of London, Londne, 1954
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN978-0-471-01003-6http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html
    • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
    • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
  • Klitzing, Richard. "7D uniform polytopes (polyexa)".

External links

Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform polychoron Pentachoron 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds