체발리–이와호리-나가타 정리

Chevalley

수학에서, 체발리는–Iwahori–Nagata theorem states that if a linear algebraic group G is acting linearly on a finite-dimensional vector space V, then the map from V/G to the spectrum of the ring of invariant polynomials is an isomorphism if this ring is finitely generated and all orbits of G on V are closed (Dieudonné & Carrell 1970, p.53, 1971, p.55).클로드 체발리, 이와호리 나가요시, 나가타 마사요시의 이름을 따서 지은 것이다.

참조

  • Dieudonné, Jean A.; Carrell, James B. (1970), "Invariant theory, old and new", Advances in Mathematics, 4: 1–80, doi:10.1016/0001-8708(70)90015-0, ISSN 0001-8708, MR 0255525
  • Dieudonné, Jean A.; Carrell, James B. (1971), Invariant theory, old and new, Boston, MA: Academic Press, doi:10.1016/0001-8708(70)90015-0, ISBN 978-0-12-215540-6, MR 0279102