양자 효율 탐정

Detective quantum efficiency

양자 효율 탐정(DQE라고도 함)은 (영상 대비와 관련된) 신호와 영상 시스템의 노이즈 성능을 결합한 효과의 척도로, 일반적으로 공간 주파수의 함수로 표현된다. 이 값은 주로 광학 영상의료 방사선 촬영에서 영상 검출기를 설명하는 데 사용된다.

의료 방사선 촬영에서 DQE는 X선 영상 시스템이 이상적인 검출기에 비해 높은 신호 대 잡음 비(SNR)의 영상을 얼마나 효과적으로 생성할 수 있는지를 설명한다. 동일한 영상 SNR 및 노출 조건에 대해 DQE가 증가함에 따라 환자에 대한 필수 방사선 피폭(따라서 해당 방사선 피폭으로 인한 생물학적 위험)이 감소하기 때문에 검출기의 방사선량 효율성의 대용치로 간주되기도 한다.

DQE는 또한 CCD, 특히 광선 전자현미경 검사에서 저준위 영상에 사용되는 CCD에 대한 중요한 고려사항으로, 이미지의 SNR에 영향을 미치기 때문이다. 그것은 또한 일부 전자 기기를 설명하는 데 사용되는 소음 계수와 유사하다. 이 개념은 화학 센서로 확장되었으며,[1] 이 경우 대체 용어 검출성이[2] 더 적절하다.

역사

1940년대부터 텔레비전 카메라와 광촉자 장치 등 다양한 광학 탐지기의 신호소음 성능을 분류하는 데 과학적인 관심이 많았다. 예를 들어, 영상 화질은 영상을 생성하는 데 사용되는 퀀텀 수에 의해 제한된다는 것을 보여주었다. 검출기의 양자 효율성은 상호 작용하여 영상 화질에 영향을 미치는 입사 퀀텀의 분율을 설명하기 때문에 성능의 일차 측정 기준이다. 그러나 다른 물리적 프로세스도 영상 화질을 저하시킬 수 있으며, 1946년 알버트 로즈[3] 그러한 시스템의 성능을 기술하기 위해 유용한 양자 효율 또는 동등한 양자 효율의 개념을 제안했는데, 우리는 이것을 탐정 양자 효율이라고 부른다. DQE의 중요성과 적용에 대한 초기 검토는 Zweig와[4] Jones에 의해 이루어졌다.[5]

DQE는 X선 필름 스크린 시스템에 대한 설명을 위해 쇼에[6][7] 의해 의료 이미지 커뮤니티에 소개되었다. 그는 이러한 시스템(신호 대 잡음 비 측면에서)의 영상 화질이 소음 등가 퀀텀(NEQ)의 관점에서 어떻게 표현될 수 있는지를 보여주었다. NEQ는 특정 SNR을 생성하는 데 필요한 최소 X선 퀀텀 수를 설명한다. 따라서 NEQ는 영상 화질을 측정하는 척도로, 매우 근본적인 의미에서 영상의 가치가 얼마나 되는지 설명한다. 또한 그것은 이상적인 관찰자에 의해 균일한 소음 제한 영상에서 저대조 구조를 얼마나 잘 감지할 수 있는지를 설명하기 때문에 중요한 물리적 의미를 가지고 있는데, 이는 특정한 조건 하에서 인간 관찰자가 무엇을 시각화할 수 있는지를 나타내는 지표다.[8][9] 또한 이미지를 생성하기 위해 얼마나 많은 X선 퀀텀이 사용되었는지(검출기에 발생한 X선 퀀텀 사건의 수), q, 우리는 다수의 X선 퀀텀의 관점에서 이미지의 비용을 알고 있다. DQE는 이미지의 가치얼마인지와 포아송 분산 퀀텀의 숫자로 환산한 비율이다.

=

이러한 의미에서 DQE는 이상적인 검출기에 상대적인 X선 영상에서 이용 가능한 정보 콘텐츠를 영상 시스템이 얼마나 효과적으로 캡처하는지 설명한다. 이것은 DQE가 가능한 한 단결에 가깝게 만들어져야만 환자에 대한 방사선 피폭이 가능한 한 낮게 유지될 수 있다는 것을 말해주기 때문에 X선 의료 영상 촬영에서 매우 중요하다. 이러한 이유로 DQE는 규제, 상업, 과학 및 의료계에서 검출기 성능의 근본적인 척도로 널리 받아들여지고 있다.

정의

DQE는 일반적으로 푸리에 기반한 공간 주파수의 관점에서 다음과 같이 표현된다.[10]

여기서 u는 밀리미터당 사이클의 공간 주파수 변수, q는 입사 X선 퀀텀의 밀도, G는 선형 및 오프셋 보정 검출기의 출력 신호와 관련된 시스템 이득, T(u)는 시스템 변조 전송 함수, W(u)는 이미지 Wiener 소음 스펙트럼 대응이다.ng to q. 이는 푸리에 기반한 분석 방법이기 때문에 광감 정지 또는 광감 주기적 소음 프로세스를 포함하는 선형 및 시프트 인바리어스 영상 시스템(선형시간 변이 시스템 이론과 유사하지만 시간 불변성을 공간 이동 불변성으로 대체)에만 유효하다. DQE는 종종 계단식 선형 시스템 이론을 사용하여 특정 영상 시스템에 대해 이론적으로 모델링될 수 있다.[11]

DQE는 용어를 올바르게 해석하기 위해 주의를 기울이면 동일한 대체 형태로 표현되는 경우가 많다. 예를 들어, 입사 포아송 분포의 제곱-SNR은 제곱 밀리미터당 퀀텀a를 다음과 같이 제공한다.

그리고 이 입력에 해당하는 이미지의 그것 은 다음과 같이 주어진다.

따라서 DQE의 대중화된 해석은 제곱된 출력 SNR 대 제곱된 입력 SNR의 비율과 동일하다.

이 관계는 입력이 영상 퀀텀의 균일한 포아송 분포이고 신호와 노이즈가 정확하게 정의될 때만 참이다.

DQE 측정

국제전기기술위원회([12]IEC 6 society-1)의 보고서는 디지털 X선 영상촬영 시스템의 DQE 측정에 필요한 방법과 알고리즘을 표준화하기 위한 노력의 일환으로 개발되었다.

높은 DQE의 장점

매우 낮은 노이즈와 우수한 대조도 성능의 조합으로 일부 디지털 X선 시스템이 저대조도 물체의 검출 가능성을 상당히 개선할 수 있다. 즉, 단일 파라미터인 DQE로 가장 정량화된 품질이다. 한 의학 물리학 전문가가[who?] 최근 보고한[when?] 대로, DQE는 기존과 신흥 X선 검출기 기술을 비교하는 데 있어 사실상의 기준이 되었다.

DQE는 특히 작고 저조도 물체를 보는 능력에 영향을 미친다. 사실, 많은 영상 상황에서, 공간 분해능을 제한하는 것보다 작은 물체를 감지하는 것이 더 중요하다 - 전통적으로 물체가 얼마나 작은지 시각화할 수 있는지를 결정하는 데 사용되는 매개변수. 디지털 시스템이 LSR이 매우 높더라도 DQE가 낮으면 해상도를 활용할 수 없어 매우 작은 물체를 감지할 수 없다.

필름/스크린과 디지털 이미징을 비교한 연구는 디지털 시스템이 필름보다 훨씬 낮은 LSR(Limiting Spatial Resolution)을 가질 수 있음에도 불구하고 DQE가 높은 디지털 시스템이 작고 저대비도의 물체를 감지하는 능력을 향상시킬 수 있다는 것을 보여준다.

방사선량 감소는 디지털 X선 기술의 또 다른 잠재적인 장점이며, 높은 DQE는 이 방정식에 상당한 기여를 해야 한다. 필름/스크린 이미징과 비교하여 DQE가 높은 디지털 검출기는 등가선량에서 상당한 물체 검출성 개선을 제공하거나 감소된 선량에서 필름에 버금가는 물체 검출성을 허용할 가능성이 있다.

마찬가지로 중요한 것은, 높은 DQE는 첨단 디지털 어플리케이션, 예를 들어 이중 에너지 이미징, 단층합성, 저선량 투시 진단에 필요한 기반을 제공한다. 고급 영상 처리 알고리즘과 빠른 획득 및 판독 기능을 결합한 높은 DQE는 향후 임상적으로 이러한 애플리케이션을 실용화하는 데 핵심적이다.

참조

  1. ^ S. 망하니와 J. J. 램스덴, 화학탐지기의 효율, J Biol Physical Chem 3:11-17, 2003
  2. ^ R.C. 존스, 탐지율: 방사선 방출 소음 등가 입력의 역수, 자연(런던) 170:937-938, 1952
  3. ^ A. 로즈, 사진 필름, 텔레비전 픽업 튜브, 그리고 인간의 눈에 대한 통일된 접근법 J Soc Motion Pict Television Eng 47:273-294, 1946
  4. ^ H.J. Zweig, 광 검출기의 성능 기준 - 진화 개념, Photogr Sci Engn 8:305-311, 1964
  5. ^ R.C. 존스, Scientific American 219:110, 1968
  6. ^ R. Shaw, 사진 공정의 등가 양자 효율, J Photogr Sci 11:199-204, 1963
  7. ^ J.C. 다인티와 R. Shaw, Image Science, Academic Press, New York, 1974년
  8. ^ H.H. 바렛, J. 야오, J.P. 롤랑드, K. 마이어스, 이미지 품질 평가를 위한 모델 관찰자, Proc Natl Acad Sci USA 90:9758-9765, 1993
  9. ^ Medical Imaging - ICRU Report 54, 1995, Int Comm Rad Units 및 Meas의 이미지 품질 평가
  10. ^ I.A. Cunningham, Handbook of Medical Imaging에서 적용된 선형 시스템 이론: 제1권, 물리학과 정신물리학, 에드 J. 뷰텔, H.L. 쿤델과 R. Van Metter, SPIE Press, 2000년
  11. ^ I.A. 커닝햄과 R. Shaw, 의료 영상 시스템의 신호 대 잡음 최적화, J Opt Soc Am A 16:621-632, 1999
  12. ^ 디지털 X선 영상장치의 특성 - 제1부: 양자효율 탐사의 결정, 국제전기기술위원회 보고서 IEC 6 executive-1, 2003

외부 링크

  • [1] 양자 효율 탐정이란?
  • [2], 양자 효율 탐정
  • [3], DQE A Simplified View