디니 연속성

Dini continuity

수학적 분석에서 디니 연속성연속성의 정교함이다.모든 Dini 연속 기능은 연속적이다.모든 립스키츠 연속기능은 디니 연속기능이다.

정의

을(를) 메트릭 공간(: 의 작은 부분 집합으로 하고 f: → X 오른쪽 화살표 X을(를 함수로 한다. 연속성 계수는

함수는 다음과 같은 경우 Dini-연속함수라고 한다.

동등한 조건은, 임의의 , ) 에 대해, 입니다

(는 지름이다

참고 항목

참조

  • Stenflo, Örjan (2001). "A note on a theorem of Karlin". Statistics & Probability Letters. 54 (2): 183–187. doi:10.1016/S0167-7152(01)00045-1.