반슈텐의 정리
Van Schooten's theorem네덜란드의 수학자 프란스 반 슈텐의 이름을 딴 반 슈텐의 정리는 정삼각형의 성질을 묘사하고 있다.다음과 같이 명시되어 있다.
- For an equilateral triangle with a point on its circumcircle the length of longest of the three line segments connecting with the vertices of the triangle equals the sum of the lengths of the other t비오
그 정리는 프톨레마이오스가 주기적인 4차측정에 대한 정리의 결과물이다.을(를) 정삼각형의 측면 길이로 A C {\ 및 P 을(를) 가장 긴 선 세그먼트로 한다.삼각형의 꼭지점과 {\는 원추형 4각형을 형성하며 따라서 프톨레마이오스의 정리는 다음과 같이 산출된다
마지막 방정식을 로 나누면 반 슈텐의 정리를 알 수 있다.
참조
- 클라우디 알시나, 로저 B넬슨:매력적인 증거: 우아한 수학으로의 여정.2010년 MAA, 2010년 ISBN9780883853481, 페이지 102-103
- 더그 프렌치:강의 및 학습 기하학.블룸즈베리 출판, 2004, ISBN 9780826434173, 페이지 62–64
- Raymond Viglione: Proof Without Words: van Schooten′s Organization.수학잡지 제89권, 제2호(2016년 4월), 페이지 132
- 조즈세프 산도르:등변 삼각형의 기하학에서.포럼 기하학, 제5권(2005), 페이지 107–117
외부 링크
![]() | 위키미디어 커먼즈에는 반슈텐의 정리 관련 미디어가 있다. |
- 반 슈텐의 정리 cut-the-knot.org