수학 에서 불완전한 베셀함수 는 베셀함수 의 완전형에서 확장형으로 작용하는 특수함수 의 유형이다.
정의. 불완전한 Besel 함수 는 완전형 Besel 함수 의 동일한 지연 미분 방정식 으로 정의된다.
J v − 1 ( z , w ) − J v + 1 ( z , w ) = 2 ∂ ∂ z J v ( z , w ) {\displaystyle J_{v-1}(z,w)-J_{v+1}(z,w)=2{\dfrac {\partial z}{\partial z}{v_{v}(z,w)}} Y v − 1 ( z , w ) − Y v + 1 ( z , w ) = 2 ∂ ∂ z Y v ( z , w ) {\displaystyle Y_{v-1}(z,w)-Y_{v+1}(z,w)=2{\dfrac {\partial z} Y_{v}(z,w)} I v − 1 ( z , w ) + I v + 1 ( z , w ) = 2 ∂ ∂ z I v ( z , w ) {\displaystyle I_{v-1}(z,w)+ I_{v+1}(z,w)=2{\dfrac {\partial }{\partial z}} I_{v}(z,w)} K v − 1 ( z , w ) + K v + 1 ( z , w ) = − 2 ∂ ∂ z K v ( z , w ) {\displaystyle K_{v-1}(z,w)+K_{v+1}(z,w)=-2{\dfrac {\partial z}{\partial z}{v_{v}(z,w)}} H v − 1 ( 1 ) ( z , w ) − H v + 1 ( 1 ) ( z , w ) = 2 ∂ ∂ z H v ( 1 ) ( z , w ) {\displaystyle H_{v-1}^{(1)(z,w)-H_{v+1}^{(1)(z,w)=2{\dfrac {\partial z}} H_{v}^{(1)}(z,w)} H v − 1 ( 2 ) ( z , w ) − H v + 1 ( 2 ) ( z , w ) = 2 ∂ ∂ z H v ( 2 ) ( z , w ) {\displaystyle H_{v-1}^{(2)}(z,w)-H_{v+1}^{(2)(z,w)=2{\dfrac {\partial }{\partial z}}}} H_{v}^{(2)}(z,w)} 그리고 완전한 형태의 Besel 함수 의 그것으로부터 다음 과 같은 지연 미분 방정식 의 적절한 확장 형태:
J v − 1 ( z , w ) + J v + 1 ( z , w ) = 2 v z J v ( z , w ) − 2 태닝을 하다 v w z ∂ ∂ w J v ( z , w ) {\displaystyle J_{v-1}(z,w)+J_{v+1}(z,w)={\dfrac {2v}{z}}J_{v}(z,w)-{\dfrac {2\tanh vw}{z}}{\dfrac {\partial }{\partial w}}J_{v}(z,w)} Y v − 1 ( z , w ) + Y v + 1 ( z , w ) = 2 v z Y v ( z , w ) − 2 태닝을 하다 v w z ∂ ∂ w Y v ( z , w ) {\displaystyle Y_{v-1}(z,w)+ Y_{v+1}(z,w)={\dfrac {2v}{z}}} Y_{v}(z,w)-{\dfrac {2\tanh vw}{z}}{\dfrac {\partial w}}} Y_{v}(z,w)} I v − 1 ( z , w ) − I v + 1 ( z , w ) = 2 v z I v ( z , w ) − 2 태닝을 하다 v w z ∂ ∂ w I v ( z , w ) {\dplaystyle I_{v-1}(z,w)-I_{v+1}(z,w)={\dfrac {2v}{z}}}} I_{v}(z,w)-{\dfrac {2\tanh vw}{z}}{\dfrac {\partial w}}{\partial w}}} I_{v}(z,w)} K v − 1 ( z , w ) − K v + 1 ( z , w ) = − 2 v z K v ( z , w ) + 2 태닝을 하다 v w z ∂ ∂ w K v ( z , w ) {\displaystyle K_{v-1}(z,w)-K_{v+1}(z,w)=-{\dfrac {2v}{z}}K_{v}(z,w)+{\dfrac {2\tanh vw}{z}}{\dfrac {\partial }{\partial w}}K_{v}(z,w)} H v − 1 ( 1 ) ( z , w ) + H v + 1 ( 1 ) ( z , w ) = 2 v z H v ( 1 ) ( z , w ) − 2 태닝을 하다 v w z ∂ ∂ w H v ( 1 ) ( z , w ) {\displaystyle H_{v-1}^{(1)}(z,w)+ H_{v+1}^{(1)}(z,w)={\dfrac {2v}{z}}}} H_{v}^{(1)-{\dfrac {2\tanh vw}{z}}{\dfrac {\partial w}{\partial w}}} H_{v}^{(1)}(z,w)} H v − 1 ( 2 ) ( z , w ) + H v + 1 ( 2 ) ( z , w ) = 2 v z H v ( 2 ) ( z , w ) − 2 태닝을 하다 v w z ∂ ∂ w H v ( 2 ) ( z , w ) {\displaystyle H_{v-1}^{(2)}(z,w)+ H_{v+1}^{(2)}(z,w)={\dfrac {2v}{z}}}}} H_{v}^{{v}^{(2)-{\dfrac {2\tanh vw}{z}}{\dfrac {\partial w}}{\partial w}}}} H_{v}^{(2)}(z,w)} 새 매개 변수 w {\displaystyle w} 이(가) 두 번째 종류의 수정된 Besel 함수 의 상위 미완성 형식 과 하위 미완성 형식 의 정수 경계를 정의하는 경우:[1] [2]
K v ( z , w ) = ∫ w ∞ e − z 코쉬 t 코쉬 v t d t {\displaystyle K_{v}(z,w)=\int _{w}^{\\infit }e^{-z\cosh t}\cosh vt~dt} J ( z , v , w ) = ∫ 0 w e − z 코쉬 t 코쉬 v t d t {\displaystyle J(z,v,w)=\int _{0}^{w}e^{-z\cosh t}\cosh vt~dt} 특성. J v ( z , w ) = J v ( z ) + e v π i 2 J ( i z , v , w ) − e − v π i 2 J ( − i z , v , w ) i π {\displaystyle J_{v}(z,w)= J_{v}(z)+{\dfrac {e^{\frac {v\pi i}{2}}J(iz,v,w)-e^{-{\frac {v\pi i}{2}}J(-iz,v,w)}{i\pi }}}}}}}}}}}}}}{i\pi}}}}}}}}}}}}}}" Y v ( z , w ) = Y v ( z ) + e v π i 2 J ( i z , v , w ) + e − v π i 2 J ( − i z , v , w ) π {\displaystyle Y_{v}(z,w)= Y_{v}(z)+{\dfrac {e^{\frac {v\pi i}{2}}J(iz,v,w)+e^{-{\frac {v\pi i}{2}}J(-iz,v,w)}{\pi }}}}}}}}}}}}}}{\pi }}}}}}}}}}}}}}}}}}}}}" I - v ( z , w ) = I v ( z , w ) {\displaystyle I_{-v}(z,w)= 정수 v {\displaystyle v} 에 대한 I_{v}(z,w)} I − v ( z , w ) − I v ( z , w ) = I − v ( z ) − I v ( z ) − 2 죄를 짓다 v π π J ( z , v , w ) {\displaystyle I_{-v}(z,w)-I_{v}(z,w)= I_{-v}(z)-I_{v}(z)-{\dfrac {2\sin v\pi }{\pi }}J(z,v,w)}} I v ( z , w ) = I v ( z ) + J ( − z , v , w ) − e − v π i J ( z , v , w ) i π {\displaystyle I_{v}(z,w)= I_{v}(z)+{\dfrac {J(-z,v,w)-e^{-v\pi i}J(z,v,w)}{i\pi }}}} I v ( z , w ) = e − v π i 2 J v ( i z , w ) {\displaystyle I_{v}(z,w)=e^{-{\frac {v\pi i}{2}}J_{v}(이즈,w)}} K − v ( z , w ) = K v ( z , w ) {\displaystyle K_{-v}(z,w)=K_{v}(z,w)} K v ( z , w ) = π 2 I − v ( z , w ) − I v ( z , w ) sin v π {\displaystyle K_{v}(z,w)={\dfrac {\pi }{2}}{\dfrac {I_{-v}(z,w)-I_{v}(z,w)}{\sin v\pi }}} for non-integer v {\displaystyle v} H v ( 1 ) ( z , w ) = J v ( z , w ) + i Y v ( z , w ) {\displaystyle H_{v}^{(1)(z,w)= J_{v}(z,w)+iY_{v}(z,w)} H v ( 2 ) ( z , w ) = J v ( z , w ) − i Y v ( z , w ) {\displaystyle H_{v}^{(2)}(z,w)= J_{v}(z,w)-iY_{v}(z,w)} H − v ( 1 ) ( z , w ) = e v π i H v ( 1 ) ( z , w ) {\displaystyle H_{-v}^{(1)(z,w)=e^{v\pi i}H_{v}^{(1)(z,w)}} H − v ( 2 ) ( z , w ) = e − v π i H v ( 2 ) ( z , w ) {\displaystyle H_{-v}^{{-v}^{(2)(z,w)=e^{-v\pi i}H_{v}^{(2)(z,w)}}} H v ( 1 ) ( z , w ) = J − v ( z , w ) − e − v π i J v ( z , w ) i sin v π = Y − v ( z , w ) − e − v π i Y v ( z , w ) sin v π {\displaystyle H_{v}^{(1)}(z,w)={\dfrac {J_{-v}(z,w)-e^{-v\pi i}J_{v}(z,w)}{i\sin v\pi }}={\dfrac {Y_{-v}(z,w)-e^{-v\pi i}Y_{v}(z,w)}{\sin v\pi }}} for non-integer v {\displaystyle v} H v ( 2 ) ( z , w ) = e v π i J v ( z , w ) − J − v ( z , w ) i sin v π = Y − v ( z , w ) − e v π i Y v ( z , w ) sin v π {\displaystyle H_{v}^{(2)}(z,w)={\dfrac {e^{v\pi i}J_{v}(z,w)-J_{-v}(z,w)}{i\sin v\pi }}={\dfrac {Y_{-v}(z,w)-e^{v\pi i}Y_{v}(z,w)}{\sin v\pi }}} for non-integer v {\displaystyle v}
미분 방정식 K v ( z , w ) {\displaystyle K_{v}(z,w)} 이(가) 비균형 Besel의 미분 방정식 을 만족함
z 2 d 2 y d z 2 + z d y d z − ( x 2 + v 2 ) y = ( v 징징거리다 v w + z 코쉬 v w 징징거리다 w ) e − z 코쉬 w {\dplaystyle z^{2}{dfrac {d^{2}y}{dz^{2}}+z{dy}{dfrac {dy}{dz}-(x^{2}+v^{2})y=(v\sinh vw+z\cosh vw\sinh w)e^{-z\cosh w}}} Both J v ( z , w ) {\displaystyle J_{v}(z,w)} , Y v ( z , w ) {\displaystyle Y_{v}(z,w)} , H v ( 1 ) ( z , w ) {\displaystyle H_{v}^{(1)}(z,w)} and H v ( 2 ) ( z , w ) {\displaystyle H_{v}^{(2)}(z,w)} satisfy the partial differential equation
z 2 ∂ 2 y ∂ z 2 + z ∂ y ∂ z + ( z 2 − v 2 ) y − ∂ 2 y ∂ w 2 + 2 v 태닝을 하다 v w ∂ y ∂ w = 0 {\displaystyle z^{2}{\dfrac {\partial ^{2}y}{\partial z^{2}}}+z{\dfrac {\partial y}{\partial z}}+(z^{2}-v^{2})y-{\dfrac {\partial ^{2}y}{\partial w^{2}}}+2v\tanh vw{\dfrac {\partial y}{\partial w}}=0} I v ( z , w ) {\displaystyle I_{v}(z , w)} 및 K v( z ,w ) {\displaystyle K_{v}(z,w) 모두 부분 미분 방정식 을 만족한다 .
z 2 ∂ 2 y ∂ z 2 + z ∂ y ∂ z − ( z 2 + v 2 ) y − ∂ 2 y ∂ w 2 + 2 v 태닝을 하다 v w ∂ y ∂ w = 0 {\displaystyle z^{2}{\dfrac {\partial ^{2}y}{\partial z^{2}}}+z{\dfrac {\partial y}{\partial z}}-(z^{2}+v^{2})y-{\dfrac {\partial ^{2}y}{\partial w^{2}}}+2v\tanh vw{\dfrac {\partial y}{\partial w}}=0} 적분표현 위 의 예비 정의를 바탕으로 J v ( z , w ) {\ displaystyle J_{v}(z,w)}, Y v ( z , w ) {\displaystyle Y_{v}(z,w)} 의 통합 형식을 직접 도출할 수 있다.
J v ( z , w ) = J v ( z ) + 1 π i ( ∫ 0 w e v π i 2 − i z 코쉬 t 코쉬 v t d t − ∫ 0 w e i z 코쉬 t − v π i 2 코쉬 v t d t ) = J v ( z ) + 1 π i ( ∫ 0 w cas ( z 코쉬 t − v π 2 ) 코쉬 v t d t − i ∫ 0 w 죄를 짓다 ( z 코쉬 t − v π 2 ) 코쉬 v t d t − ∫ 0 w cas ( z 코쉬 t − v π 2 ) 코쉬 v t d t − i ∫ 0 w 죄를 짓다 ( z 코쉬 t − v π 2 ) 코쉬 v t d t ) = J v ( z ) + 1 π i ( − 2 i ∫ 0 w 죄를 짓다 ( z 코쉬 t − v π 2 ) 코쉬 v t d t ) = J v ( z ) − 2 π ∫ 0 w 죄를 짓다 ( z 코쉬 t − v π 2 ) 코쉬 v t d t {\displaystyle {\reasoned} J_ᆩ(z,w)&^J_ᆪ(z)+{\dfrac{1}{\pi 나는}}\left(\int_{0}일 경우 ^{w}e^{{\frac{v\pi 나는}{2}}-iz\cosh t}\cosh vt~dt-\int_{0}일 경우 ^{w}e^{iz\cosh t-{\frac{v\pi 나는}{2}}}\cosh vt~dt\right)\\&, =.J_ᆫ(z)+{\dfrac{1}{\pi 나는}}\left(\int_{0}일 경우 ^{w}\cos \left(z\cosh t-{\dfrac{v\pi}{2}}\right)\coshvt~dt-i\int _{0}^{w}\sin \left(z\cosh t-{\dfrac{v\pi}{2}}\right)\cosh vt~dt-\. Int _{0}^{w}\cos \left(z\cosh t-{\dfrac{v\pi}{2}}\right)\cosh vt~dt-i\int _{0}^{w}\sin \left(z\cosh t-{\dfrac{v\pi}{2}}\right)\cosh vt~dt\right)\\&, =.J_ᆪ(z)+{\dfrac{1}{\pi 나는}}\left(-2i\int_{0}일 경우 ^{w}\sin \left(z\cosh t-{\dfrac{v\pi}{2}}\right)\cosh vt~dt\right)\\&, =.J_ᆩ(z)-{\dfrac{2}{\pi}}_{0}^{w}\sin \left(z\cosh t-{\dfrac{v\pi}{2}}년 \int. 오른쪽)\cosh vt~dt\end{aigned}} Y v ( z , w ) = Y v ( z ) + 1 π ( ∫ 0 w e v π i 2 − i z 코쉬 t 코쉬 v t d t + ∫ 0 w e i z 코쉬 t − v π i 2 코쉬 v t d t ) = Y v ( z ) + 1 π ( ∫ 0 w cas ( z 코쉬 t − v π 2 ) 코쉬 v t d t − i ∫ 0 w 죄를 짓다 ( z 코쉬 t − v π 2 ) 코쉬 v t d t + ∫ 0 w cas ( z 코쉬 t − v π 2 ) 코쉬 v t d t + i ∫ 0 w 죄를 짓다 ( z 코쉬 t − v π 2 ) 코쉬 v t d t ) = Y v ( z ) + 2 π ∫ 0 w cas ( z 코쉬 t − v π 2 ) 코쉬 v t d t {\displaystyle {\reasoned} Y_{v}(z,w)&= Y_{v}(z)+{\dfrac {1}{\pi }}\left(\int _{0}^{w}e^{{\frac {v\pi i}{2}}-iz\cosh t}\cosh vt~dt+\int _{0}^{w}e^{iz\cosh t-{\frac {v\pi i}{2}}}\cosh vt~dt\right)\ \&=Y_{v}(z)+{\dfrac {1}{\pi }}\left(\int _{0}^{w}\cos \left(z\cosh t-{\dfrac {v\pi }{2}}\right)\cosh vt~dt-i\int _{0}^{w}\sin \left(z\cosh t-{\dfrac {v\pi }{2}}\right)\cosh vt~dt+\int _{0}^{w}\cos \left(z\cosh t-{\dfrac {v\pi }{2}}\right)\cosh vt~dt+i\int _{0}^{w}\sin \left(z\cosh t-{\dfrac {v\pi }{2}}\right)\cosh vt~dt\right)\ \&=Y_{v}(z)+{\dfrac {2}{\pi }\int_{0}^{w}\cos \left(z\cosh t-{\dfrac {v\pi }{2}}\riged})\cosh vt~dt\end{liged}}}}}}}} With the Mehler–Sonine integral expressions of J v ( z ) = 2 π ∫ 0 ∞ sin ( z cosh t − v π 2 ) cosh v t d t {\displaystyle J_{v}(z)={\dfrac {2}{\pi }}\int _{0}^{\infty }\sin \left(z\cosh t-{\dfrac {v\pi }{2}}\right)\cosh vt~dt} and Y v ( z ) = − 2 π ∫ 0 ∞ cos ( z cosh t − v π 2 ) cosh v t t t t {\dplaystyle Y_{v}(z)=-{\dfrac {2}{\pi }\int _{0}^{\inflt }\cos \left(z\cosh t-{\dfrac {v\}}}{ 2}}\rig)\ [3] cosh vt} 수학함수학 함수 디지털 라이브러리 에서 언급함수
we can further simplify to J v ( z , w ) = 2 π ∫ w ∞ sin ( z cosh t − v π 2 ) cosh v t d t {\displaystyle J_{v}(z,w)={\dfrac {2}{\pi }}\int _{w}^{\infty }\sin \left(z\cosh t-{\dfrac {v\pi }{2}}\right)\cosh vt~dt} and Y v ( z , w ) = − 2 π ∫ w ∞ cos ( z cosh t − v π 2 ) cosh v t d t {\displaystyle Y_{v}(z,w)=-{\dfrac {2}{\pi }}\int _{w}^{\infty }\cos \left(z\cosh t-{\dfrac {v\pi }{2}}\right)\cosh vt~dt} , but the issue is not quite good since the convergence range will reduce greatly to v < 1 {\displaystyle v <1} .
참조 ^ Jones, D. S. (February 2007). "Incomplete Bessel functions. I" . Proceedings of the Edinburgh Mathematical Society . 50 (1): 173–183. doi :10.1017/S0013091505000490 . ^ Shu, Jian-Jun; Shastri, K.K. (2020). "Basic properties of incomplete Macdonald function with applications" . Journal of Function Spaces . 2020 : 6548298. doi :10.1155/2020/6548298 . ^ Paris, R. B. (2010), "Bessel Functions" , in Olver, Frank W. J. ; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions , Cambridge University Press, ISBN 978-0-521-19225-5 , MR 2723248 외부 링크