HSPA1B
HSPA1B인간유전자 HSPA1B는 Hsp70 단백질 계열의 하나인 열충격 단백질 HSP70-2를 암호화하는 인트론리스 유전자다.[5] 그 유전자는 주조직 적합성 단지에서 염색체 6의 짧은 팔에, HSPA1A과 HSPA1L.[6][7][8]HSPA1A과 HSPA1B 거의 동일한 단백질을 만들어 낸다 두 유사 유전자와 함께 클러스터 때문에 그들의 DNA서열에서 몇몇 차이점들은 거의 전적으로 동의어가 대체 또는 3주요 번역되지 않은 r에 있egion, hHSPA1A에서 70kDa 단백질 1A를 섭취하고 HSPA1B에서 70kDa 단백질 1B를 섭취한다.[6] 이들 유전자에 대한 세 번째 더 변형된 파라로그는 동일한 영역인 HSPA1L에 존재하며, 다른 두 유전자와 90%의 동질감을 공유한다.[8]
함수
열충격 70kDa 단백질 1B는 세포 내 다른 단백질의 구조적 순응을 안정화하고 응력에 의한 집적으로부터 보호함으로써 프로테오스타시를 유지하기 위해 다른 열충격 단백질 및 샤페론 시스템과 협력하는 세포단백질이다.[9] Hsp70s는 또한 아데닌과 우라실 베이스가 풍부한 mRNA를 다른 결합 사이트의 직업 상태와 무관하게 결합하고 안정화하는 것으로 나타났다.[10] 이 단백질은 ATP를 결합시켜 비활성화되고, ADP에 대한 인산소화에 의해 활성화되는데, ADP-ADP 교환을 용이하게 하기 위해 칼륨 이온이 필요하다.[11]
Hsp70-2는 특히 감수분열 시 남성 생식선 세포에서 발달적으로 표현되는데, 여기서 CDC2와 사이클린 B1 사이의 복합체 형성에 필요하다.[12] 이후 정자조 운동성을 가능하게 하는 전문 칼슘 이온 통로인 CatSper 콤플렉스에 편입된다.[13]
임상적 유의성
감수성 세포 주기가 S상 이상으로 진행되기 위해 사이클린 B1과 함께 필요한 이단계를 형성할 수 없는 CDC2가 HSA1B 발현이 교란되었을 때 생쥐에서 불임이 관찰되었다.[14]
변형된 종양 세포에서 열충격 단백질 70kDa 단백질 2의 발현이 난소, 방광 용혈, 유방암에서 빠른 증식, 전이, 세포사멸 억제와 관련되어 있다.[15][16][17] HSPA1B-1267 단일 뉴클레오티드 다형성증을 가진 만성 B형 간염이나 C형 간염 바이러스 감염 환자는 간세포암 발생 위험이 높다.[18]
상호작용
Hsp70-2와 다음과 같은 단백질 사이에 상호작용이 특징지어졌다.
- ATF5,[19]
- BAG1,[20]
- BAG2,[21]
- BAG3,[22]
- CatSperβ,[23]
- CDC2,[24]
- CHHD3,[25]
- DNAJC7,[26][27]
- DNAJC8,[28]
- DNAJC9,[29][30]
- FOXP3,[31]
- HDAC4,[32]
- 홉스,[33]
- HSP40,[34]
- HSP90,[35]
- HSP105,[36]
- IRAK1BP1,[37]
- METTL21A,[38]
- NAA10,[39]
- NEDD1,[40]
- NOD2,[41]
- PPP5C,[42]
- PKRN,[43]
- SMAD3,[44]
- 스텁1,[45]
- TERT,[46]
- TRIM5,[47]
- TSC2,[48]
참고 항목
참조
- ^ a b c ENSG00000224501, ENSG00000212866, ENSG00000204388, ENSG00000231555 GRCh38: Ensembl release 89: ENSG00000232804, ENSG00000224501, ENSG00000212866, ENSG00000204388, ENSG00000231555 - Ensembl, May 2017
- ^ a b c GRCm38: 앙상블 릴리스 89: ENSMUSG000091971 - 앙상블, 2017년 5월
- ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
- ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
- ^ Milner CM, Campbell RD (1990). "Structure and expression of the three MHC-linked HSP70 genes". Immunogenetics. 32 (4): 242–251. doi:10.1007/BF00187095. PMID 1700760. S2CID 9531492.
- ^ a b "Entrez Gene: HSPA1A heat shock 70kDa protein 1B".
- ^ Ito Y, Ando A, Ando H, Ando J, Saijoh Y, Inoko H, Fujimoto H (August 1998). "Genomic structure of the spermatid-specific hsp70 homolog gene located in the class III region of the major histocompatibility complex of mouse and man". Journal of Biochemistry. 124 (2): 347–353. doi:10.1093/oxfordjournals.jbchem.a022118. PMID 9685725.
- ^ a b Sargent CA, Dunham I, Trowsdale J, Campbell RD (March 1989). "Human major histocompatibility complex contains genes for the major heat shock protein HSP70". Proceedings of the National Academy of Sciences of the United States of America. 86 (6): 1968–1972. doi:10.1073/pnas.86.6.1968. PMC 286826. PMID 2538825.
- ^ Rosenzweig R, Nillegoda NB, Mayer MP, Bukau B (November 2019). "The Hsp70 chaperone network". Nature Reviews. Molecular Cell Biology. 20 (11): 665–680. doi:10.1038/s41580-019-0133-3. PMID 31253954.
- ^ Kishor A, White EJ, Matsangos AE, Yan Z, Tandukar B, Wilson GM (August 2017). "Hsp70's RNA-binding and mRNA-stabilizing activities are independent of its protein chaperone functions". The Journal of Biological Chemistry. 292 (34): 14122–14133. doi:10.1074/jbc.M117.785394. PMC 5572911. PMID 28679534.
- ^ Arakawa A, Handa N, Shirouzu M, Yokoyama S (August 2011). "Biochemical and structural studies on the high affinity of Hsp70 for ADP". Protein Science. 20 (8): 1367–1379. doi:10.1002/pro.663. PMC 3189522. PMID 21608060.
- ^ Eddy EM (January 1999). "Role of heat shock protein HSP70-2 in spermatogenesis". Reviews of Reproduction. 4 (1): 23–30. doi:10.1530/ror.0.0040023. PMID 10051099.
- ^ Liu J, Xia J, Cho KH, Clapham DE, Ren D (June 2007). "CatSperbeta, a novel transmembrane protein in the CatSper channel complex". The Journal of Biological Chemistry. 282 (26): 18945–18952. doi:10.1074/jbc.M701083200. PMID 17478420.
- ^ Eddy EM (January 1999). "Role of heat shock protein HSP70-2 in spermatogenesis". Reviews of Reproduction. 4 (1): 23–30. doi:10.1530/ror.0.0040023. PMID 10051099.
- ^ Gupta N, Jagadish N, Surolia A, Suri A (2017). "Heat shock protein 70-2 (HSP70-2) a novel cancer testis antigen that promotes growth of ovarian cancer". American Journal of Cancer Research. 7 (6): 1252–1269. PMC 5489776. PMID 28670489.
- ^ Garg M, Kanojia D, Seth A, Kumar R, Gupta A, Surolia A, Suri A (January 2010). "Heat-shock protein 70-2 (HSP70-2) expression in bladder urothelial carcinoma is associated with tumour progression and promotes migration and invasion". European Journal of Cancer. 46 (1): 207–215. doi:10.1016/j.ejca.2009.10.020. PMID 19914824.
- ^ Rohde M, Daugaard M, Jensen MH, Helin K, Nylandsted J, Jäättelä M (March 2005). "Members of the heat-shock protein 70 family promote cancer cell growth by distinct mechanisms". Genes & Development. 19 (5): 570–582. doi:10.1101/gad.305405. PMC 551577. PMID 15741319.
- ^ Jeng JE, Tsai JF, Chuang LY, Ho MS, Lin ZY, Hsieh MY, et al. (March 2008). "Heat shock protein A1B 1267 polymorphism is highly associated with risk and prognosis of hepatocellular carcinoma: a case-control study". Medicine. 87 (2): 87–98. doi:10.1097/MD.0b013e31816be95c. PMID 18344806. S2CID 26906991.
- ^ Liu X, Liu D, Qian D, Dai J, An Y, Jiang S, et al. (June 2012). "Nucleophosmin (NPM1/B23) interacts with activating transcription factor 5 (ATF5) protein and promotes proteasome- and caspase-dependent ATF5 degradation in hepatocellular carcinoma cells". The Journal of Biological Chemistry. 287 (23): 19599–19609. doi:10.1074/jbc.M112.363622. PMC 3365995. PMID 22528486.
- ^ Rauch JN, Gestwicki JE (January 2014). "Binding of human nucleotide exchange factors to heat shock protein 70 (Hsp70) generates functionally distinct complexes in vitro". The Journal of Biological Chemistry. 289 (3): 1402–1414. doi:10.1074/jbc.M113.521997. PMC 3894324. PMID 24318877.
- ^ Rauch JN, Gestwicki JE (January 2014). "Binding of human nucleotide exchange factors to heat shock protein 70 (Hsp70) generates functionally distinct complexes in vitro". The Journal of Biological Chemistry. 289 (3): 1402–1414. doi:10.1074/jbc.M113.521997. PMC 3894324. PMID 24318877.
- ^ Rauch JN, Gestwicki JE (January 2014). "Binding of human nucleotide exchange factors to heat shock protein 70 (Hsp70) generates functionally distinct complexes in vitro". The Journal of Biological Chemistry. 289 (3): 1402–1414. doi:10.1074/jbc.M113.521997. PMC 3894324. PMID 24318877.
- ^ Liu J, Xia J, Cho KH, Clapham DE, Ren D (June 2007). "CatSperbeta, a novel transmembrane protein in the CatSper channel complex". The Journal of Biological Chemistry. 282 (26): 18945–18952. doi:10.1074/jbc.M701083200. PMID 17478420.
- ^ Zhu D, Dix DJ, Eddy EM (August 1997). "HSP70-2 is required for CDC2 kinase activity in meiosis I of mouse spermatocytes". Development. 124 (15): 3007–3014. PMID 9247342.
- ^ Darshi M, Mendiola VL, Mackey MR, Murphy AN, Koller A, Perkins GA, et al. (January 2011). "ChChd3, an inner mitochondrial membrane protein, is essential for maintaining crista integrity and mitochondrial function". The Journal of Biological Chemistry. 286 (4): 2918–2932. doi:10.1074/jbc.M110.171975. PMC 3024787. PMID 21081504.
- ^ Brychzy A, Rein T, Winklhofer KF, Hartl FU, Young JC, Obermann WM (July 2003). "Cofactor Tpr2 combines two TPR domains and a J domain to regulate the Hsp70/Hsp90 chaperone system". The EMBO Journal. 22 (14): 3613–3623. doi:10.1093/emboj/cdg362. PMC 165632. PMID 12853476.
- ^ Moffatt NS, Bruinsma E, Uhl C, Obermann WM, Toft D (August 2008). "Role of the cochaperone Tpr2 in Hsp90 chaperoning". Biochemistry. 47 (31): 8203–8213. doi:10.1021/bi800770g. PMID 18620420.
- ^ Ito N, Kamiguchi K, Nakanishi K, Sokolovskya A, Hirohashi Y, Tamura Y, et al. (June 2016). "A novel nuclear DnaJ protein, DNAJC8, can suppress the formation of spinocerebellar ataxia 3 polyglutamine aggregation in a J-domain independent manner". Biochemical and Biophysical Research Communications. 474 (4): 626–633. doi:10.1016/j.bbrc.2016.03.152. PMID 27133716.
- ^ Han C, Chen T, Li N, Yang M, Wan T, Cao X (February 2007). "HDJC9, a novel human type C DnaJ/HSP40 member interacts with and cochaperones HSP70 through the J domain". Biochemical and Biophysical Research Communications. 353 (2): 280–285. doi:10.1016/j.bbrc.2006.12.013. PMID 17182002.
- ^ Hammond CM, Bao H, Hendriks IA, Carraro M, García-Nieto A, Liu Y, et al. (June 2021). "DNAJC9 integrates heat shock molecular chaperones into the histone chaperone network". Molecular Cell. 81 (12): 2533–2548.e9. doi:10.1016/j.molcel.2021.03.041. PMC 8221569. PMID 33857403.
- ^ Chen Z, Barbi J, Bu S, Yang HY, Li Z, Gao Y, et al. (August 2013). "The ubiquitin ligase Stub1 negatively modulates regulatory T cell suppressive activity by promoting degradation of the transcription factor Foxp3". Immunity. 39 (2): 272–285. doi:10.1016/j.immuni.2013.08.006. PMC 3817295. PMID 23973223.
- ^ Seo JH, Park JH, Lee EJ, Vo TT, Choi H, Kim JY, et al. (October 2016). "ARD1-mediated Hsp70 acetylation balances stress-induced protein refolding and degradation". Nature Communications. 7: 12882. doi:10.1038/ncomms12882. PMC 5059642. PMID 27708256.
- ^ Seo JH, Park JH, Lee EJ, Vo TT, Choi H, Kim JY, et al. (October 2016). "ARD1-mediated Hsp70 acetylation balances stress-induced protein refolding and degradation". Nature Communications. 7: 12882. doi:10.1038/ncomms12882. PMC 5059642. PMID 27708256.
- ^ Seo JH, Park JH, Lee EJ, Vo TT, Choi H, Kim JY, et al. (October 2016). "ARD1-mediated Hsp70 acetylation balances stress-induced protein refolding and degradation". Nature Communications. 7: 12882. doi:10.1038/ncomms12882. PMC 5059642. PMID 27708256.
- ^ Seo JH, Park JH, Lee EJ, Vo TT, Choi H, Kim JY, et al. (October 2016). "ARD1-mediated Hsp70 acetylation balances stress-induced protein refolding and degradation". Nature Communications. 7: 12882. doi:10.1038/ncomms12882. PMC 5059642. PMID 27708256.
- ^ Rauch JN, Gestwicki JE (January 2014). "Binding of human nucleotide exchange factors to heat shock protein 70 (Hsp70) generates functionally distinct complexes in vitro". The Journal of Biological Chemistry. 289 (3): 1402–1414. doi:10.1074/jbc.M113.521997. PMC 3894324. PMID 24318877.
- ^ Haag Breese E, Uversky VN, Georgiadis MM, Harrington MA (December 2006). "The disordered amino-terminus of SIMPL interacts with members of the 70-kDa heat-shock protein family". DNA and Cell Biology. 25 (12): 704–714. doi:10.1089/dna.2006.25.704. PMID 17233114.
- ^ Jakobsson ME, Moen A, Bousset L, Egge-Jacobsen W, Kernstock S, Melki R, Falnes PØ (September 2013). "Identification and characterization of a novel human methyltransferase modulating Hsp70 protein function through lysine methylation". The Journal of Biological Chemistry. 288 (39): 27752–27763. doi:10.1074/jbc.M113.483248. PMC 3784692. PMID 23921388.
- ^ Seo JH, Park JH, Lee EJ, Vo TT, Choi H, Kim JY, et al. (October 2016). "ARD1-mediated Hsp70 acetylation balances stress-induced protein refolding and degradation". Nature Communications. 7: 12882. doi:10.1038/ncomms12882. PMC 5059642. PMID 27708256.
- ^ Fang CT, Kuo HH, Pan TS, Yu FC, Yih LH (October 2016). "HSP70 regulates the function of mitotic centrosomes". Cellular and Molecular Life Sciences. 73 (20): 3949–3960. doi:10.1007/s00018-016-2236-8. PMID 27137183.
- ^ Mohanan V, Grimes CL (July 2014). "The molecular chaperone HSP70 binds to and stabilizes NOD2, an important protein involved in Crohn disease". The Journal of Biological Chemistry. 289 (27): 18987–18998. doi:10.1074/jbc.M114.557686. PMC 4081938. PMID 24790089.
- ^ Zeke T, Morrice N, Vázquez-Martin C, Cohen PT (January 2005). "Human protein phosphatase 5 dissociates from heat-shock proteins and is proteolytically activated in response to arachidonic acid and the microtubule-depolymerizing drug nocodazole". The Biochemical Journal. 385 (Pt 1): 45–56. doi:10.1042/BJ20040690. PMC 1134672. PMID 15383005.
- ^ Hasson SA, Kane LA, Yamano K, Huang CH, Sliter DA, Buehler E, et al. (December 2013). "High-content genome-wide RNAi screens identify regulators of parkin upstream of mitophagy". Nature. 504 (7479): 291–295. doi:10.1038/nature12748. PMC 5841086. PMID 24270810.
- ^ Shang Y, Xu X, Duan X, Guo J, Wang Y, Ren F, et al. (March 2014). "Hsp70 and Hsp90 oppositely regulate TGF-β signaling through CHIP/Stub1". Biochemical and Biophysical Research Communications. 446 (1): 387–392. doi:10.1016/j.bbrc.2014.02.124. PMID 24613385.
- ^ Seo JH, Park JH, Lee EJ, Vo TT, Choi H, Kim JY, et al. (October 2016). "ARD1-mediated Hsp70 acetylation balances stress-induced protein refolding and degradation". Nature Communications. 7: 12882. doi:10.1038/ncomms12882. PMC 5059642. PMID 27708256.
- ^ Forsythe HL, Jarvis JL, Turner JW, Elmore LW, Holt SE (May 2001). "Stable association of hsp90 and p23, but Not hsp70, with active human telomerase". The Journal of Biological Chemistry. 276 (19): 15571–15574. doi:10.1074/jbc.C100055200. PMID 11274138.
- ^ Hwang CY, Holl J, Rajan D, Lee Y, Kim S, Um M, et al. (March 2010). "Hsp70 interacts with the retroviral restriction factor TRIM5alpha and assists the folding of TRIM5alpha". The Journal of Biological Chemistry. 285 (10): 7827–7837. doi:10.1074/jbc.M109.040618. PMC 2844226. PMID 20053985.
- ^ Nellist M, Burgers PC, van den Ouweland AM, Halley DJ, Luider TM (August 2005). "Phosphorylation and binding partner analysis of the TSC1-TSC2 complex". Biochemical and Biophysical Research Communications. 333 (3): 818–826. doi:10.1016/j.bbrc.2005.05.175. PMID 15963462.
외부 링크
- HSPA1B+단백질,+인간(US National Library of Medicine Medical Pubject Headings, MesSH)
이 기사는 공공영역에 있는 미국 국립 의학 도서관의 텍스트를 통합하고 있다.