육각 프리즘

Hexagonal prism
균일한 육각 프리즘
Hexagonal prism.png
유형 프리즘 균일 다면체
요소들 F = 8, E = 18, V = 12(수평 = 2)
옆얼굴 6{4}+2{6}
슐레플리 기호 t{2,6} 또는 {6}×{}
와이토프 기호 2 6 2
2 2 3
콕시터 도표 CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 6.pngCDel node.png
CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 3.pngCDel node 1.png
CDel node 1.pngCDel 2.pngCDel node h.pngCDel 6.pngCDel node h.png
CDel node h.pngCDel 2x.pngCDel node h.pngCDel 6.pngCDel node 1.png
대칭 D6h, [6,2], (*622), 주문 24
회전군 D6, [6,2],+ (622), 주문 12
참조 U76(d)
이중 육각 디피라미드
특성. 볼록한 조노헤드론
Hexagonal prism vertfig.png
정점수
4.4.6
균일한 육각 프리즘의 3D 모델.

기하학에서 육각 프리즘육각기반이 있는 프리즘이다.다면체는 8개의 면, 18개의 가장자리, 12개의 꼭지점을 가지고 있다.[1]

얼굴이 8개여서 팔면체다. 그러나 팔면체라는 용어는 주로 8개의 삼각형 면을 가진 정규 팔면체를 가리킬 때 사용된다. 옥타헤드론이라는 용어의 애매함과 다양한 8면체의 유사성 때문에 그 용어는 설명 없이 거의 사용되지 않는다.

깎기 전에, 많은 연필들은 긴 육각 프리즘의 모양을 취한다.[2]

반정형(또는 균일) 다면체로서

얼굴이 모두 규칙적인 경우, 육각 프리즘은 반정형 다면체로서, 보다 일반적으로는 획일적인 다면체로서, 정사각형 면과 두 개의 일반 다각형 캡으로 이루어진 무한대의 프리즘 집합에서 네 번째가 된다. 잘린 육각형 호소헤드론(Schléfli 기호 t{2,6})으로 볼 수 있다. 또는 일반 육각형 및 라인 세그먼트데카르트 제품으로 볼 수 있으며, {6}×{} 제품으로 표현된다. 육각 프리즘의 이중육각형 비피라미드다.

오른쪽 육각 프리즘의 대칭 그룹은 순서 24의 D이다6h. 회전 그룹은 순서 12의 D이다6.

볼륨

대부분의 프리즘에서와 같이, 볼륨은 베이스의 면적을 의 측면 길이로 하여 h{\h}에 곱하여 다음과 같은 공식을 제공한다[3]

대칭

균일한 육각 프리즘의 위상은 다음과 같은 하부 대칭의 기하학적 변화를 가질 수 있다.

이름 정각 프리즘 육각형 좌상 직교 프리즘 삼암 프리즘 직교 트라페조프리즘
대칭 D6h, [2,6], (*622) C6v, [6], (*66) D3h, [2,3], (*322) D3d, [2+,6], (2*3)
건설 {6}×{}, CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 6.pngCDel node.png t{3}×{}, CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 2.pngCDel node f1.pngCDel 3.pngCDel node f1.png s2{2,6}, CDel node h.pngCDel 2x.pngCDel node h.pngCDel 6.pngCDel node 1.png
이미지 Hexagonal Prism.svg Hexagonal frustum.png Truncated triangle prism.png Cantic snub hexagonal hosohedron.png
왜곡. Hexagonal frustum2.png Truncated triangle prism2.png Isohedral hexagon prism.png
Isohedral hexagon prism2.png
Cantic snub hexagonal hosohedron2.png

공간 테셀레이션의 일부로

그것은 3차원 4개의 프리즘 균일 볼록 벌집의 세포로 존재한다.

육각 프리즘 벌집[1]
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel infin.pngCDel node.png
삼각헥사각 프리즘 벌집
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel infin.pngCDel node.png
스너브 삼각 헥스각 프리즘 벌집
CDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 2.pngCDel node 1.pngCDel infin.pngCDel node.png
Rhombitriangular-hexangel 프리즘 벌집
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.pngCDel infin.pngCDel node.png
Hexagonal prismatic honeycomb.png Triangular-hexagonal prismatic honeycomb.png Snub triangular-hexagonal prismatic honeycomb.png Rhombitriangular-hexagonal prismatic honeycomb.png

또한 다음을 포함한 다수의 4차원 균일 4폴리탑의 세포로도 존재한다.

잘린 사면 프리즘
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png
잘린 팔면 프리즘
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node 1.png
잘린 큐옥타헤드랄 프리즘
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 2.pngCDel node 1.png
잘린 이두면 프리즘
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.pngCDel 2.pngCDel node 1.png
잘린 이코시다데카헤드랄 프리즘
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node 1.pngCDel 2.pngCDel node 1.png
Truncated tetrahedral prism.png Truncated octahedral prism.png Truncated cuboctahedral prism.png Truncated icosahedral prism.png Truncated icosidodecahedral prism.png
구획 5셀
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
잡동사니 5세포
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
구획 16셀
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
잡탕의 정방체
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
4-simplex t013.svg 4-simplex t0123.svg 4-cube t023.svg 4-cube t0123.svg
24구경.
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
전지 24셀
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
6백 셀을 달리다.
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
다량의 120셀
CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
24-cell t0123 F4.svg 24-cell t013 F4.svg 120-cell t023 H3.png 120-cell t0123 H3.png

관련 다면체 및 틸팅

균일한 육각형 이면구형 다면체
대칭: [6,2], (*622) [6,2]+, (622) [6,2+], (2*3)
Hexagonal dihedron.png Dodecagonal dihedron.png Hexagonal dihedron.png Spherical hexagonal prism.png Spherical hexagonal hosohedron.png Spherical truncated trigonal prism.png Spherical dodecagonal prism2.png Spherical hexagonal antiprism.png Spherical trigonal antiprism.png
CDel node 1.pngCDel 6.pngCDel node.pngCDel 2.pngCDel node.png CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 2.pngCDel node.png CDel node.pngCDel 6.pngCDel node 1.pngCDel 2.pngCDel node.png CDel node.pngCDel 6.pngCDel node 1.pngCDel 2.pngCDel node 1.png CDel node.pngCDel 6.pngCDel node.pngCDel 2.pngCDel node 1.png CDel node 1.pngCDel 6.pngCDel node.pngCDel 2.pngCDel node 1.png CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 2.pngCDel node 1.png CDel node h.pngCDel 6.pngCDel node h.pngCDel 2x.pngCDel node h.png CDel node.pngCDel 6.pngCDel node h.pngCDel 2x.pngCDel node h.png
{6,2} t{6,2} r{6,2} t{2,6} {2,6} rr{6,2} tr{6,2} sr{6,2} s{2,6}
듀얼 투 유니폼
Spherical hexagonal hosohedron.png Spherical dodecagonal hosohedron.png Spherical hexagonal hosohedron.png Spherical hexagonal bipyramid.png Hexagonal dihedron.png Spherical hexagonal bipyramid.png Spherical dodecagonal bipyramid.png Spherical hexagonal trapezohedron.png Spherical trigonal trapezohedron.png
V62 V122 V62 V4.4.6 V26 V4.4.6 V4.4.12 V3.3.3.6 V3.3.3.3

이 다면체는 꼭지점 수치(4.6.2p)와 Coxeter-Dynkin 도표를 가진 일련의 균일한 패턴의 구성원으로 간주될 수 있다. p < 6의 경우, 시퀀스의 구성원은 구면 기울기로서 아래에 표시된 전위절제 다면체(조노헤드론)이다. p > 6의 경우 잘린 3헥타르 타일링부터 시작하여 쌍곡면의 기울기이다.

*n32 전분해 틸팅의 대칭 변이: 4.6.2n
Sym.
*n32
[n,3]
구면 유클리드 콤팩트 하이퍼브. 파라코. 비대칭 쌍곡선
*232
[2,3]
*332
[3,3]
*432
[4,3]
*532
[5,3]
*632
[6,3]
*732
[7,3]
*832
[8,3]
*∞32
[∞,3]

[12i,3]

[9i,3]

[6i,3]

[3i,3]
수치 Spherical truncated trigonal prism.png Uniform tiling 332-t012.png Uniform tiling 432-t012.png Uniform tiling 532-t012.png Uniform polyhedron-63-t012.png Truncated triheptagonal tiling.svg H2-8-3-omnitruncated.svg H2 tiling 23i-7.png H2 tiling 23j12-7.png H2 tiling 23j9-7.png H2 tiling 23j6-7.png H2 tiling 23j3-7.png
구성. 4.6.4 4.6.6 4.6.8 4.6.10 4.6.12 4.6.14 4.6.16 4.6.∞ 4.6.24i 4.6.18i 4.6.12i 4.6.6i
듀얼스 Spherical hexagonal bipyramid.png Spherical tetrakis hexahedron.png Spherical disdyakis dodecahedron.png Spherical disdyakis triacontahedron.png Tiling Dual Semiregular V4-6-12 Bisected Hexagonal.svg H2checkers 237.png H2checkers 238.png H2checkers 23i.png H2 checkers 23j12.png H2 checkers 23j9.png H2 checkers 23j6.png H2 checkers 23j3.png
구성. V4.6.4 V4.6.6 V4.6.8 V4.6.10 V4.6.12 V4.6.14 V4.6.16 V4.6.1987 V4.6.24i V4.6.18i V4.6.12i V4.6.6i

참고 항목

균일-곤 프리즘 계열
프리즘 이름 디조날 프리즘 (트리거)
삼각 프리즘
(Tetrangle)
사각 프리즘
오각형 프리즘 육각 프리즘 헵타곤 프리즘 팔각 프리즘 엔네오각 프리즘 십각형 프리즘 헨드각 프리즘 도십각 프리즘 ... 아페이로곤 프리즘
다면체 이미지 Yellow square.gif Triangular prism.png Tetragonal prism.png Pentagonal prism.png Hexagonal prism.png Prism 7.png Octagonal prism.png Prism 9.png Decagonal prism.png Hendecagonal prism.png Dodecagonal prism.png ...
구형 타일링 영상 Tetragonal dihedron.png Spherical triangular prism.png Spherical square prism.png Spherical pentagonal prism.png Spherical hexagonal prism.png Spherical heptagonal prism.png Spherical octagonal prism.png Spherical decagonal prism.png 평면 타일링 영상 Infinite prism.svg
정점 구성. 2.4.4 3.4.4 4.4.4 5.4.4 6.4.4 7.4.4 8.4.4 9.4.4 10.4.4 11.4.4 12.4.4 ... ∞.4.4
콕시터 다이어그램 CDel node 1.pngCDel 2.pngCDel node.pngCDel 2.pngCDel node 1.png CDel node 1.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png CDel node 1.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node 1.png CDel node 1.pngCDel 5.pngCDel node.pngCDel 2.pngCDel node 1.png CDel node 1.pngCDel 6.pngCDel node.pngCDel 2.pngCDel node 1.png CDel node 1.pngCDel 7.pngCDel node.pngCDel 2.pngCDel node 1.png CDel node 1.pngCDel 8.pngCDel node.pngCDel 2.pngCDel node 1.png CDel node 1.pngCDel 9.pngCDel node.pngCDel 2.pngCDel node 1.png CDel node 1.pngCDel 10.pngCDel node.pngCDel 2.pngCDel node 1.png CDel node 1.pngCDel 11.pngCDel node.pngCDel 2.pngCDel node 1.png CDel node 1.pngCDel 12.pngCDel node.pngCDel 2.pngCDel node 1.png ... CDel node 1.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node 1.png

참조

  1. ^ a b Pugh, Anthony (1976), Polyhedra: A Visual Approach, University of California Press, pp. 21, 27, 62, ISBN 9780520030565.
  2. ^ Simpson, Audrey (2011), Core Mathematics for Cambridge IGCSE, Cambridge University Press, pp. 266–267, ISBN 9780521727921.
  3. ^ Wheater, Carolyn C. (2007), Geometry, Career Press, pp. 236–237, ISBN 9781564149367.

외부 링크