콕시터 표기법

Coxeter notation
반사 3D 포인트 그룹의 기본 영역
CDel node.png, [ ]=[1]
C1v
CDel node.pngCDel 2.pngCDel node.png, [2]
C2v
CDel node.pngCDel 3.pngCDel node.png, [3]
C3v
CDel node.pngCDel 4.pngCDel node.png, [4]
C4v
CDel node.pngCDel 5.pngCDel node.png, [5]
C5v
CDel node.pngCDel 6.pngCDel node.png, [6]
C6v
Spherical digonal hosohedron.png
주문2길
Spherical square hosohedron.png
주문4길
Spherical hexagonal hosohedron.png
순서 6
Spherical octagonal hosohedron.png
주문 8
Spherical decagonal hosohedron.png
주문 10
Spherical dodecagonal hosohedron.png
순서 12
CDel node.pngCDel 2.pngCDel node.png
[2]=[2,1]
D1h
CDel node.pngCDel 2.pngCDel node.pngCDel 2.pngCDel node.png
[2,2]
D2h
CDel node.pngCDel 2.pngCDel node.pngCDel 3.pngCDel node.png
[2,3]
D3h
CDel node.pngCDel 2.pngCDel node.pngCDel 4.pngCDel node.png
[2,4]
D4h
CDel node.pngCDel 2.pngCDel node.pngCDel 5.pngCDel node.png
[2,5]
D5h
CDel node.pngCDel 2.pngCDel node.pngCDel 6.pngCDel node.png
[2,6]
D6h
Spherical digonal bipyramid.png
주문4길
Spherical square bipyramid.png
주문 8
Spherical hexagonal bipyramid.png
순서 12
Spherical octagonal bipyramid.png
순서 16
Spherical decagonal bipyramid.png
주문 20
Spherical dodecagonal bipyramid.png
주문24
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png, [3,3], Td CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png, [4,3], Oh CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.png, [5h,3] I
Spherical tetrakis hexahedron-3edge-color.png
주문24
Spherical disdyakis dodecahedron-3and1-color.png
주문로48번길
Spherical compound of five octahedra.png
주문로120번길
Coxeter 표기법은 다면체 그룹과 같이 Coxeter 다이어그램의 분기 순서 목록으로 Coxeter 그룹을 표현한다. = [p,q]. 다이헤드 그룹 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , 명시적인 순서 2 가지 , [2,n] 가지와

기하학에서 Coxeter 표기법(Coxeter 기호도 역시 Coxeter 기호)은 대칭군 분류 체계로서 Coxeter-Dynkin 도표의 구조를 나타내는 브라켓형 표기법으로 Coxeter 그룹의 근본적인 반사 사이의 각도를 기술하고 있으며, 특정 부분군을 나타내는 수식어를 사용한다. 이 표기법은 H. S. M. Coxeter의 이름을 따서 명명되었으며, 노먼 존슨에 의해 보다 포괄적으로 정의되었다.

반사 그룹

순수한 반사로 정의되는 Coxeter 그룹의 경우, 대괄호 표기법과 Coxeter-Dynkin 도표 사이에 직접적인 일치성이 있다. 괄호 표기법의 숫자는 Coxeter 도표의 분기에 있는 거울 반사 순서를 나타낸다. 직교 거울 사이에 2초를 억제하면서 동일한 단순화를 사용한다.

Coxeter 표기법은 선형 다이어그램에 대해 행에 있는 가지 수를 나타내기 위해 지수를 사용하여 단순화된다. 따라서 A 그룹n [3n−1]로 표시되며, 이는 n-1 주문-3 분기로 연결된 n개의 노드를 의미한다. 예제 A2 = [3,3] = [32] 또는 [31,1]은 도표 또는 를 나타낸다.

Coxeter는 처음에는 숫자의 수직 위치를 갖는 분기 도표를 나타냈으나, 나중에 [...,3p,q] 또는 [3p,q,r]과 같은 지수 표기법으로 약칭하여 [31,1,1] 또는 [31,1] = 또는 D로4 시작한다CDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png. An 계열에 맞는 특별한 경우로서 0에 대해 허용되는 콕시터(예: A3 = [3,3,3] = [34,0,04,0] = [33,1] = [3] = [32,2], like = = = .

주기 다이어그램에 의해 형성된 콕시터 그룹은 삼각형 그룹(pq r)에 대한 [(p,q,r)] =와 같이 괄호 안에 있는 괄호로 표현된다. 분기 순서가 같을 경우, [(3,3,3[4],3)] = [3]와 같이 괄호 안의 주기 길이에 따라 지수로 그룹화할 수 있다. Coxeter 다이어그램 또는 .를 나타내는 것은 [3,3,3)] 또는 [3,3[3]]로 나타낼 수 있다.

더 복잡한 루프 도표도 주의 깊게 표현할 수 있다. 파라콤팩트 콕시터 그룹은 콕시터 표기법[(3,3,3)]으로 나타낼 수 있으며, 두 개의 인접한 [(3,3,3) 루프를 보여주는 내포/과대칭 괄호를 가지고 있으며, 콕시터 다이어그램의 롬빅 대칭을 나타내는 [3[ ]×[ ]]으로 보다 압축적으로 표현된다. 파라콤팩트 전체 그래프 다이어그램 또는 CDel branch.pngCDel splitcross.pngCDel branch.png일반 사면체 코엑스터 다이어그램의 대칭으로 위첨자 [3,3]와 함께 [3[3,3]]로 표시된다.

Coxeter 다이어그램은 보통 순서-2 가지를 사용하지 않고 그대로 두지만, 괄호 표기법에는 서브그래프를 연결하기 위한 명시적 2가 포함되어 있다. 따라서 Coxeter 다이어그램 = A2×A2 = 2A는2 [3]×[3] = [3]2 = [3,2,3]로 나타낼 수 있다. 때때로 명시적 2-브랜치는 2개의 라벨 또는 간격이 있는 선과 함께 포함되거나 [3,2,3]과 동일한 표시로 포함될 수 있다.

유한군
순위 그룹
심볼
브래킷
표기법
콕시터
도표를 만들다
2 A2 [3] CDel node.pngCDel 3.pngCDel node.png
2 B2 [4] CDel node.pngCDel 4.pngCDel node.png
2 H2 [5] CDel node.pngCDel 5.pngCDel node.png
2 G2 [6] CDel node.pngCDel 6.pngCDel node.png
2 아이2(p) [p] CDel node.pngCDel p.pngCDel node.png
3 h, H3 [5,3] CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.png
3 Td, A3 [3,3] CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
3 Oh, B3 [4,3] CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
4 A4 [3,3,3] CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
4 B4 [4,3,3] CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
4 D4 [31,1,1] CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.png
4 F4 [3,4,3] CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
4 H4 [5,3,3] CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
n An [3n−1] CDel node.pngCDel 3.pngCDel node.pngCDel 3.png..CDel 3.pngCDel node.pngCDel 3.pngCDel node.png
n Bn [4,3n−2] CDel node.pngCDel 4.pngCDel node.pngCDel 3.png...CDel 3.pngCDel node.pngCDel 3.pngCDel node.png
n Dn [3n−3,1,1] CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.png...CDel 3.pngCDel node.pngCDel 3.pngCDel node.png
6 E6 [32,2,1] CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
7 E7 [33,2,1] CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
8 E8 [34,2,1] CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
아핀 그룹
그룹
심볼
브래킷
표기법
콕시터 다이어그램
[∞] CDel node.pngCDel infin.pngCDel node.png
[3[3]] CDel node.pngCDel split1.pngCDel branch.png
[4,4] CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
[6,3] CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
[3[4]] CDel node.pngCDel split1.pngCDel nodes.pngCDel split2.pngCDel node.png
[4,31,1] CDel node.pngCDel 4.pngCDel node.pngCDel split1.pngCDel nodes.png
[4,3,4] CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
[3[5]] CDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel branch.png
[4,3,31,1] CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png
[4,3,3,4] CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
[ 31,1,1,1] CDel nodes.pngCDel split2.pngCDel node.pngCDel split1.pngCDel nodes.png
[3,4,3,3] CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
[3[n+1]] CDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.png...CDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch.png
또는
CDel branch.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.png...CDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch.png
[4,3n−3,31,1] CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.png...CDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png
[4,3n−2,4] CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.png...CDel 3.pngCDel node.pngCDel 4.pngCDel node.png
[ 31,1,3n−4,31,1] CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.png...CDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png
[32,2,2] CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branchbranch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
[33,3,1] CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
[35,2,1] CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
쌍곡선군
그룹
심볼
브래킷
표기법
콕시터
도표를 만들다
[p,q]
2(p + q) < pq와 함께
CDel node.pngCDel p.pngCDel node.pngCDel q.pngCDel node.png
[(p,q,r)]
+ + < 1 p}+{p}{p{1
CDel pqr.png
[4,3,5] CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
[5,3,5] CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
[3,5,3] CDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.png
[5,31,1] CDel node.pngCDel 5.pngCDel node.pngCDel split1.pngCDel nodes.png
[(3,3,3,4)] CDel label4.pngCDel branch.pngCDel 3ab.pngCDel branch.png
[(3,3,3,5)] CDel label5.pngCDel branch.pngCDel 3ab.pngCDel branch.png
[(3,4,3,4)] CDel label4.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel label4.png
[(3,4,3,5)] CDel label4.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel label5.png
[(3,5,3,5)] CDel label5.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel label5.png
[3,3,3,5] CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
[4,3,3,5] CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
[5,3,3,5] CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
[5,3,31,1] CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png
[(3,3,3,3,4)] CDel label4.pngCDel branch.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.png

어핀 및 쌍곡선 그룹의 경우, 첨자는 각 그룹이 유한 그룹의 다이어그램에 노드를 추가하여 얻었기 때문에 각각의 경우에서 노드 수보다 1개 적다.

부분군

Coxeter의 표기법은 대괄호 밖에 상위첨자 연산자를 추가하여 회전/변환 대칭을 나타내며, 이 연산자는 그룹 [X]+의 순서를 반으로 자르고, 따라서 지수 2 하위그룹을 나타낸다. 이 연산자는 반사를 회전(또는 번역)으로 대체하여 짝수 연산자를 적용해야 함을 의미한다. Coxeter 그룹에 적용했을 때, 이것을 다이렉트 서브그룹이라고 부르는데, 남아 있는 것은 반사 대칭이 없는 다이렉트 이소메트리일 뿐이다.

연산자는 또한 [X,Y+] 또는 [X,(Y,Z)]+와 같이 괄호 안에 적용될 수 있으며 반사 발전기와 비반사 발전기를 모두 포함할 수 있는 "semidirect" 하위그룹을 생성할 수 있다. 반간접적인 하위 그룹은 그것과 인접한 주문 분기가 있는 Coxeter 그룹 하위 그룹에만 적용할 수 있다. Coxeter 그룹 내부의 괄호들에 의한 요소는 인접한 순서의 가지를 반순으로 나누는 효과를 가지면서 위첨자 연산자에게 줄 수 있으므로, 일반적으로 짝수 숫자로만 적용된다. 예를 들면 [4,3+]과 [4,(3,3)]()+이다.CDel node.pngCDel 4.pngCDel node h2.pngCDel 3.pngCDel node h2.pngCDel 3.pngCDel node h2.png

인접한 홀수 분기를 적용하면 지수 2의 하위 그룹을 생성하지 않고, 대신 [5,1+] = [5/2]와 같이 겹치는 기본 도메인을 생성하여 펜타그램, {5/2}, [5,3+]와 같은 이중으로 포장된 폴리곤을 슈바르츠 삼각형 [5/2,3] 밀도 2와 관련시킬 수 있다.

순위 2 그룹의 예
그룹 주문 제너레이터 부분군 주문 제너레이터 메모들
[p] CDel node n0.pngCDel p.pngCDel node n1.png 2p {0,1} [p]+ CDel node h2.pngCDel p.pngCDel node h2.png p {01} 직접 부분군
[2p+] = [2p]+ CDel node h2.pngCDel 2x.pngCDel p.pngCDel node h2.png 2p {01} [2p+]+ = [2p]+2 = [p]+ CDel node h2.pngCDel p.pngCDel node h2.png p {0101}
[2p] CDel node n0.pngCDel 2x.pngCDel p.pngCDel node n1.png 4p {0,1} [1+,2p] = [p] CDel node h0.pngCDel 2x.pngCDel p.pngCDel node.png = CDel node h2.pngCDel 2x.pngCDel p.pngCDel node.png = CDel node.pngCDel p.pngCDel node.png 2p {101,1} 부분군 반
[2p,1+] = [p] CDel node.pngCDel 2x.pngCDel p.pngCDel node h0.png = CDel node.pngCDel 2x.pngCDel p.pngCDel node h2.png = CDel node.pngCDel p.pngCDel node.png {0,010}
[1+,2p,1+] = [2p]+2 = [p]+ CDel node h0.pngCDel 2x.pngCDel p.pngCDel node h0.png = CDel node h2.pngCDel 2c.pngCDel 2x.pngCDel p.pngCDel 2c.pngCDel node h2.png = CDel node h2.pngCDel p.pngCDel node h2.png p {0101} 쿼터 그룹

주변 요소가 없는 그룹은 균일한 폴리토프의 링 노드인 Coxeter-Dynkin 도표에서 볼 수 있으며 벌집합은 요소 주위의 구멍 노드, 대체 노드가 제거된 빈 원과 관련이 있다. 그래서 스너브 큐브는 대칭 [4,3]()+CDel node h2.pngCDel 4.pngCDel node h2.pngCDel 3.pngCDel node h2.png을 가지며 스너브 4면체는 대칭 [4,3+]()CDel node.pngCDel 4.pngCDel node h2.pngCDel 3.pngCDel node h2.png을 가지며, 데미큐브, h{4,3} = {3,3}(CDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png 또는 = )은 대칭 [1+,4,3] = [3,3](CDel node h2.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png 또는 = )이다.

참고: Pyritohedral 대칭은 명확성을 위해 그래프를 공백으로 분리하고, Coxeter 그룹에서 {0,1,2} 발전기를 사용하여 Pyritohedral 생성기 {0,12}, 반사 및 3배 회전으로 기록할 수 있다. 그리고 치랄 사면 대칭은 또는CDel node h0.pngCDel 4.pngCDel node h2.pngCDel 3.pngCDel node h2.png , CDel node h2.pngCDel 2c.pngCDel 4.pngCDel node h2.pngCDel 3.pngCDel node h2.png[1+,4,3+] = [3,3]+로 표기할 수 있으며 발전기는 {12,0120}이다.

부분군 및 확장 그룹 절반 분할

반감 작업 예제
Dihedral symmetry domains 4.png Dihedral symmetry 4 half1.png
CDel node c1.pngCDel 4.pngCDel node c3.png
[1,4,1] = [4]
CDel node h0.pngCDel 4.pngCDel node c3.png = CDel node c3.pngCDel 2x.pngCDel node c3.png = CDel node c3.pngCDel 2.pngCDel node c3.png
[1+,4,1]=[2]=[ ]×[ ]
Dihedral symmetry 4 half2.png Cyclic symmetry 4 half.png
CDel node c1.pngCDel 4.pngCDel node h0.png = CDel node c1.pngCDel 2x.pngCDel node c1.png = CDel node c1.pngCDel 2.pngCDel node c1.png
[1,4,1+]=[2]=[ ]×[ ]
CDel node h0.pngCDel 4.pngCDel node h0.png = CDel node h0.pngCDel 4.pngCDel node h2.png = CDel node h2.pngCDel 4.pngCDel node h0.png = CDel node h2.pngCDel 2x.pngCDel node h2.png
[1+,4,1+] = [2]+

존슨은 거울을 제거하는 자리 표시자+ 1 노드로 작업하도록 연산자를 확장하여 기본 도메인의 크기를 두 배로 늘리고 그룹 순서를 반으로 줄인다.[1] 일반적으로 이 작업은 짝수 분기로 경계된 개별 미러에만 적용된다. 1은 거울을 나타내므로 [2p]을 도표나 와 같이 [2p,1], [1,2p] 또는 [1,2p,1]로 볼 수 있다. 미러 제거의 효과는 Coxeter 다이어그램: = , 또는 괄호 표기법:[1+,2p, 1] = [1,p,1] = [p]에서 볼 수 있는 연결 노드를 복제하는 것이다.

이러한 거울은 각각 h[2p] = [1+,2p,1] = [1,2p,1+] = [p], 반사 부분군 지수 2가 되도록 제거할 수 있다. 이는 노드 위에 기호를 추가하여 Coxeter 다이어그램에 표시할 수 있다: = = .

두 미러가 모두 제거되면 분기 순서가 순서의 절반인 회전 지점이 되는 1/4 부분군이 생성된다.

q[2p] = [1+,2p,1+] = [p],+ 지수 4. = = = = = = CDel labelp.pngCDel branch h2h2.png.

예를 들어 (p=2 포함): [4,1+] = [1+,4] = [2] = [ ]×[], 순서 4. [1+,4,1+] = [2],+ 순서 2.

반감과는 반대로 거울을 추가하는 두 배[2], 기본 영역을 이등분하고, 그룹 순서를 두 배로 하는 것이다.

[[p] = [2p]

사면 대칭팔면 그룹의 절반 그룹인 h[4,3] = [1+,4,3] = [1,4,3] = [3,3]과 같이 반감 연산이 상위 랭크 그룹에 적용된다. 미러 제거의 효과는 Coxeter 다이어그램에서 볼 수 있는 모든 연결 노드를 복제하는 것이다. = , h[2p,3] = [1+,2p,3] = [(p,3,3)]

노드가 인덱싱된 경우, 절반의 부분군에는 합성물로 새 미러를 표시할 수 있다. 과 마찬가지로 발전기 {0,1}에는 부분군 = , 생성기 {1,010}이(가) 있으며, 여기서 미러 0은 제거되고 미러 0에 반사된 미러 1의 복사본으로 대체된다. 또한 , 생성기 {0,1,2}을(를) 지정하면 절반 그룹 = , 생성기 {1,2,010}이(가) 있음.

거울을 추가하여 반감하는 동작도 역방향으로 적용한다: [[3,3] = [4,3] = [4,3], 또는 더 일반적으로 [[(q,q,p)] = [2p,q]

사면 대칭 팔면 대칭
Sphere symmetry group td.png
Td, [3,3] = [1+,4,3]
CDel node c1.pngCDel 3.pngCDel node c1.pngCDel 3.pngCDel node c1.png = CDel nodeab c1.pngCDel split2.pngCDel node c1.png = CDel node h0.pngCDel 4.pngCDel node c1.pngCDel 3.pngCDel node c1.png
(주문 24)
Sphere symmetry group oh.png
Oh, [4,3] = [3,3]
CDel node c2.pngCDel 4.pngCDel node c1.pngCDel 3.pngCDel node c1.png
(주문 48)

급진적 부분군

급진적인 부분군은 교대제와 유사하지만 회전 발전기는 제거한다.

존슨은 또한 운영자와 유사하게 작용하지만 회전 대칭은 제거하는 "[3]라디칼" 부분군을 위해 별표나 별 * 연산자를 추가했다. 급진적인 부분군의 지수는 제거된 원소의 순서다. 예를 들면 [4,3*] ≅ [2,2]이다. 제거된 [3] 부분군은 순서 6이므로 [2,2]는 [4,3]의 지수 6 부분군이다.

급진적인 부분군은 확장된 대칭 연산에 대한 역연산을 나타낸다. 예를 들어 [4,3*] ≅ [2,2], 역[2,2] as [4,3]으로 확장할 수 있다. 부분군은 Coxeter 다이어그램 또는 ≅으로 표현할 수 있다. 제거된 노드(미러)는 인접한 미러 가상 미러를 실제 미러로 만든다.

If [4,3] has generators {0,1,2}, [4,3+], index 2, has generators {0,12}; [1+,4,3] ≅ [3,3], index 2 has generators {010,1,2}; while radical subgroup [4,3*] ≅ [2,2], index 6, has generators {01210, 2, (012)3}; and finally [1+,4,3*], index 12 has generators {0(12)20, (012)201}.

삼온 부분군

순위 2 예제, 3가지 색상의 미러 라인이 있는 [6] 삼온 부분군
팔면 대칭의 예: [4,3] = [2,4]
육각 대칭[6,3]에 대한 트리오닉 부분군의 예는 더 큰 [6,3] 대칭에 매핑된다.
3위
팔각 대칭[8,3]의 삼온 부분군은 더 큰 [4,8] 대칭에 매핑된다.
4위

삼온 부분군은 지수 3 부분군이다. 존슨씨는 연산자 ⅄, 지수 3으로 트리오닉 하위그룹을 정의하고 있다. 순위 2 Coxeter 그룹의 경우 [3], 트리오닉 하위 그룹의 경우 [3]은 [ ], 단일 미러다. 그리고 [3p]의 경우, 삼온 부분군은 [3p] ≅ [p]이다. 생성자가 {0,1}인 경우 에는 3개의 트리온 하위 그룹이 있다. ⅄ 기호를 제거할 미러 발생기 옆에 놓거나, 두 가지 모두에 대해 분기([3p,1] = , ,,CDel node trionic.pngCDel 3x.pngCDel p.pngCDel node n1.png [3p] = {0,101}, {0101,1} 또는 {101,010})로 구분할 수 있다.

사면 대칭의 삼면체 부분군: [3,3] ≅ [2+,4], 정규 사면체사면체 디스페노이드의 대칭과 관련된다.

3위 Coxeter 그룹 [p,3]의 경우, [p,3] or [p/2,p] 또는 =. 예를 들어 유한 그룹 [4,3] ≅ [2,4], 유클리드 그룹 [6,3] ≅ [3,6], 쌍곡 그룹 [8,8]이 있다.

홀수 순서 인접 분기인 p는 그룹 순서를 낮추지 않고 중복되는 기본 도메인을 만든다. 그룹 순서는 그대로인 반면 밀도는 높아진다. 예를 들어, 정규 다면체고면체 대칭인 [5,3]은 2개의 일반 다면체의 대칭인 [5/2,5]가 된다. 또한 쌍곡선 기울기 {p,3} 및 별 쌍곡선 기울기 {p/2,p}과(와) 관련이 있다.

순위 4, [q,2p,3] = [2p,(p,q,q)], = .

예를 들어, [3,4,3]의 [3,3,3] 또는 [3,3]의 발전기 {0,1,3,3] 생성기 {0,1,2,32123}이(가) 있는 [3,4,3]의 생성기 {0,1,2,3}을(를) 예로 들 수 있다. 쌍곡선 그룹의 경우 [3,6,3] = [6,3[3]], [4,4,3] = [4,4,4].

사면 대칭의 삼면체 부분군

[3,3] ≅ [2+,4] 입체 투영에서 직교 미러 2개 세트의 하나로서. 빨강, 초록, 파랑은 3세트의 거울을 나타내며, 회색 선은 거울을 제거하여 2배의 자이션을 남긴다(보라색 다이아몬드).
[3,3]의 삼온관계

Johnson은 [3,3]의 두 개의 특정 삼온 하위그룹[4] 식별했고, 먼저 지수 3 하위그룹 [3,3] ≅ [2+,4], [3,3] CDel node n0.pngCDel 3.pngCDel node n1.pngCDel 3.pngCDel node n2.png( = = ) 생성기가 {0,1,2}인 것을 확인했다. 또한 발전기 {02,1}을(를) 상기시키기 위해 [(3,3,2)]()CDel node.pngCDel split1.pngCDel 2c.pngCDel branch h2h2.pngCDel label2.png으로 쓸 수 있다. 이 대칭 감소는 정규 4면체4각형 디스페노이드 사이의 관계로서, 두 개의 반대쪽 가장자리에 수직인 4면체의 스트레칭을 나타낸다.

둘째로, 그는 관련 지수 6 하위그룹[3,3] 또는 [(3,3,Δ2)]+ (),CDel node h2.pngCDel split1.pngCDel 2c.pngCDel branch h2h2.pngCDel label2.png [3,3]+ ≅[2,2]+의 지수 3을 확인하고, [3,3]의 발전기 {02,1021}, 그리고 그 발전기 {01,1,2}을(를) 식별한다.

또한 이러한 부분군은 인접한 분기가 모두 짝수인 [3,3] 부분군이 있는 더 큰 Coxeter 그룹 내에서 적용된다.

[3,3,4]의 삼차 부분군 관계

For example, [(3,3)+,4], [(3,3),4], and [(3,3)Δ,4] are subgroups of [3,3,4], index 2, 3 and 6 respectively. The generators of [(3,3),4] ≅ [[4,2,4]] ≅ [8,2+,8], order 128, are {02,1,3} from [3,3,4] generators {0,1,2,3}. And [(3,3)Δ,4] ≅ [[4,2+,4]], order 64, has generators {02,1021,3}. As well, [3,4,3] ≅ [(3,3),4].

Also related [31,1,1] = [3,3,4,1+] has trionic subgroups: [31,1,1] = [(3,3),4,1+], order 64, and 1=[31,1,1]Δ = [(3,3)Δ,4,1+] ≅ [[4,2+,4]]+, order 32.

Central inversion

A 2D central inversion is a 180 degree rotation, [2]+

A central inversion, order 2, is operationally differently by dimension. The group [ ]n = [2n−1] represents n orthogonal mirrors in n-dimensional space, or an n-flat subspace of a higher dimensional space. The mirrors of the group [2n−1] are numbered . The order of the mirrors doesn't matter in the case of an inversion. The matrix of a central inversion is , the Identity matrix with negative one on the diagonal.

From that basis, the central inversion has a generator as the product of all the orthogonal mirrors. In Coxeter notation this inversion group is expressed by adding an alternation + to each 2 branch. The alternation symmetry is marked on Coxeter diagram nodes as open nodes.

A Coxeter-Dynkin diagram can be marked up with explicit 2 branches defining a linear sequence of mirrors, open-nodes, and shared double-open nodes to show the chaining of the reflection generators.

For example, [2+,2] and [2,2+] are subgroups index 2 of [2,2], CDel node.pngCDel 2.pngCDel node.pngCDel 2.pngCDel node.png, and are represented as CDel node h2.pngCDel 2x.pngCDel node h2.pngCDel 2.pngCDel node.png (or CDel node h2.pngCDel 3.pngCDel 2c.pngCDel 3.pngCDel node h2.pngCDel 2.pngCDel node.png) and CDel node.pngCDel 2.pngCDel node h2.pngCDel 2x.pngCDel node h2.png (or CDel node.pngCDel 2.pngCDel node h2.pngCDel 3.pngCDel 2c.pngCDel 3.pngCDel node h2.png) with generators {01,2} and {0,12} respectively. Their common subgroup index 4 is [2+,2+], and is represented by CDel node h2.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel node h2.png (or CDel node h2.pngCDel 3.pngCDel 2c.pngCDel 3.pngCDel node h4.pngCDel 3.pngCDel 2c.pngCDel 3.pngCDel node h2.png), with the double-open CDel node h4.png marking a shared node in the two alternations, and a single rotoreflection generator {012}.

Dimension Coxeter notation Order Coxeter diagram Operation Generator
2 [2]+ 2 CDel node h2.pngCDel 2x.pngCDel node h2.png 180° rotation, C2 {01}
3 [2+,2+] 2 CDel node h2.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel node h2.png rotoreflection, Ci or S2 {012}
4 [2+,2+,2+] 2 CDel node h2.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel node h2.png double rotation {0123}
5 [2+,2+,2+,2+] 2 CDel node h2.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel node h2.png double rotary reflection {01234}
6 [2+,2+,2+,2+,2+] 2 CDel node h2.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel node h2.png triple rotation {012345}
7 [2+,2+,2+,2+,2+,2+] 2 CDel node h2.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel node h2.png triple rotary reflection {0123456}

Rotations and rotary reflections

Rotations and rotary reflections are constructed by a single single-generator product of all the reflections of a prismatic group, [2p]×[2q]×... where gcd(p,q,...)=1, they are isomorphic to the abstract cyclic group Zn, of order n=2pq.

The 4-dimensional double rotations, [2p+,2+,2q+] (with gcd(p,q)=1), which include a central group, and are expressed by Conway as ±[Cp×Cq],[5] order 2pq. From Coxeter diagram CDel node n0.pngCDel 2x.pngCDel p.pngCDel node n1.pngCDel 2.pngCDel node n2.pngCDel 2x.pngCDel q.pngCDel node n3.png, generators {0,1,2,3}, requires two generator for [2p+,2+,2q+], CDel node h2.pngCDel 2x.pngCDel p.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel q.pngCDel node h2.png as {0123,0132}. Half groups, [2p+,2+,2q+]+, or cyclic graph, [(2p+,2+,2q+,2+)], CDel 3.pngCDel node h4.pngCDel 2x.pngCDel p.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel q.pngCDel node h4.pngCDel 2x.png expressed by Conway is [Cp×Cq], order pq, with one generator, like {0123}.

If there is a common factor f, the double rotation can be written as 1f[2pf+,2+,2qf+] (with gcd(p,q)=1), generators {0123,0132}, order 2pqf. For example, p=q=1, f=2, 12[4+,2+,4+] is order 4. And 1f[2pf+,2+,2qf+]+, generator {0123}, is order pqf. For example, 12[4+,2+,4+]+ is order 2, a central inversion.

In general a n-rotation group, [2p1+,2,2p2+,2,...,pn+] may require up to n generators if gcd(p1,..,pn)>1, as a product of all mirrors, and then swapping sequential pairs. The half group, [2p1+,2,2p2+,2,...,pn+]+ has generators squared. n-rotary reflections are similar.

Examples
Dimension Coxeter notation Order Coxeter diagram Operation Generators Direct subgroup
2 [2p]+ 2p CDel node h2.pngCDel 2x.pngCDel p.pngCDel node h2.png Rotation {01} [2p]+2 = [p]+ Simple rotation:
[2p]+2 = [p]+
order p
3 [2p+,2+] CDel node h2.pngCDel 2x.pngCDel p.pngCDel node h4.pngCDel 2x.pngCDel node h2.png rotary reflection {012} [2p+,2+]+ = [p]+
4 [2p+,2+,2+] CDel node h2.pngCDel 2x.pngCDel p.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel node h2.png double rotation {0123} [2p+,2+,2+]+ = [p]+
5 [2p+,2+,2+,2+] CDel node h2.pngCDel 2x.pngCDel p.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel node h2.png double rotary reflection {01234} [2p+,2+,2+,2+]+ = [p]+
6 [2p+,2+,2+,2+,2+] CDel node h2.pngCDel 2x.pngCDel p.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel node h2.png triple rotation {012345} [2p+,2+,2+,2+,2+]+ = [p]+
7 [2p+,2+,2+,2+,2+,2+] CDel node h2.pngCDel 2x.pngCDel p.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel node h2.png triple rotary reflection {0123456} [2p+,2+,2+,2+,2+,2+]+ = [p]+
4 [2p+,2+,2q+] 2pq CDel node h2.pngCDel 2x.pngCDel p.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel q.pngCDel node h2.png double rotation {0123,
0132}
[2p+,2+,2q+]+ Double rotation:
[2p+,2+,2q+]+
order pq
5 [2p+,2+,2q+,2+] CDel node h2.pngCDel 2x.pngCDel p.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel q.pngCDel node h4.pngCDel 2x.pngCDel node h2.png double rotary reflection {01234,
01243}
[2p+,2+,2q+,2+]+
6 [2p+,2+,2q+,2+,2+] CDel node h2.pngCDel 2x.pngCDel p.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel q.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel node h2.png triple rotation {012345,
012354,
013245}
[2p+,2+,2q+,2+,2+]+
7 [2p+,2+,2q+,2+,2+,2+] CDel node h2.pngCDel 2x.pngCDel p.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel q.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel node h2.png triple rotary reflection {0123456,
0123465,
0124356,
0124356}
[2p+,2+,2q+,2+,2+,2+]+
6 [2p+,2+,2q+,2+,2r+] 2pqr CDel node h2.pngCDel 2x.pngCDel p.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel q.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel r.pngCDel node h2.png triple rotation {012345,
012354,
013245}
[2p+,2+,2q+,2+,2r+]+ Triple rotation:
[2p+,2+,2q+,2+,2r+]+
order pqr
7 [2p+,2+,2q+,2+,2r+,2+] CDel node h2.pngCDel 2x.pngCDel p.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel q.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel r.pngCDel node h4.pngCDel 2x.pngCDel node h2.png triple rotary reflection {0123456,
0123465,
0124356,
0213456}
[2p+,2+,2q+,2+,2r+,2+]+

Commutator subgroups

Subgroups of [4,4], down to its commutator subgroup, index 8

Simple groups with only odd-order branch elements have only a single rotational/translational subgroup of order 2, which is also the commutator subgroup, examples [3,3]+, [3,5]+, [3,3,3]+, [3,3,5]+. For other Coxeter groups with even-order branches, the commutator subgroup has index 2c, where c is the number of disconnected subgraphs when all the even-order branches are removed.[6]

For example, [4,4] has three independent nodes in the Coxeter diagram when the 4s are removed, so its commutator subgroup is index 23, and can have different representations, all with three + operators: [4+,4+]+, [1+,4,1+,4,1+], [1+,4,4,1+]+, or [(4+,4+,2+)]. A general notation can be used with +c as a group exponent, like [4,4]+3.

Example subgroups

Rank 2 example subgroups

Dihedral symmetry groups with even-orders have a number of subgroups. This example shows two generator mirrors of [4] in red and green, and looks at all subgroups by halfing, rank-reduction, and their direct subgroups. The group [4], CDel node n0.pngCDel 4.pngCDel node n1.png has two mirror generators 0, and 1. Each generate two virtual mirrors 101 and 010 by reflection across the other.

Rank 3 Euclidean example subgroups

The [4,4] group has 15 small index subgroups. This table shows them all, with a yellow fundamental domain for pure reflective groups, and alternating white and blue domains which are paired up to make rotational domains. Cyan, red, and green mirror lines correspond to the same colored nodes in the Coxeter diagram. Subgroup generators can be expressed as products of the original 3 mirrors of the fundamental domain, {0,1,2}, corresponding to the 3 nodes of the Coxeter diagram, CDel node n0.pngCDel 4.pngCDel node n1.pngCDel 4.pngCDel node n2.png. A product of two intersecting reflection lines makes a rotation, like {012}, {12}, or {02}. Removing a mirror causes two copies of neighboring mirrors, across the removed mirror, like {010}, and {212}. Two rotations in series cut the rotation order in half, like {0101} or {(01)2}, {1212} or {(02)2}. A product of all three mirrors creates a transreflection, like {012} or {120}.

Hyperbolic example subgroups

The same set of 15 small subgroups exists on all triangle groups with even order elements, like [6,4] in the hyperbolic plane:

Extended symmetry

Wallpaper
group
Triangle
symmetry
Extended
symmetry
Extended
diagram
Extended
group
Honeycombs
p3m1 (*333) a1 Triangle symmetry1.png [3[3]] CDel node.pngCDel split1.pngCDel branch.png (none)
p6m (*632) i2 Triangle symmetry3.png [[3[3]]] ↔ [6,3] CDel node c1.pngCDel split1.pngCDel branch c2.pngCDel node c1.pngCDel 3.pngCDel node c2.pngCDel 6.pngCDel node.png CDel node 1.pngCDel split1.pngCDel branch.png 1, CDel node.pngCDel split1.pngCDel branch 11.png 2
p31m (3*3) g3 Triangle symmetry2.png [3+[3[3]]] ↔ [6,3+] CDel branch.pngCDel split2.pngCDel node.pngCDel node.pngCDel 6.pngCDel node h2.pngCDel 3.pngCDel node h2.png (none)
p6 (632) r6 Triangle symmetry4.png [3[3[3]]]+ ↔ [6,3]+ CDel branch c1.pngCDel split2.pngCDel node c1.pngCDel node c1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png CDel branch hh.pngCDel split2.pngCDel node h.png (1)
p6m (*632) [3[3[3]]] ↔ [6,3] CDel branch 11.pngCDel split2.pngCDel node 1.png 3
In the Euclidean plane, the , [3[3]] Coxeter group can be extended in two ways into the , [6,3] Coxeter group and relates uniform tilings as ringed diagrams.

Coxeter's notation includes double square bracket notation, [[X]] to express automorphic symmetry within a Coxeter diagram. Johnson added alternative doubling by angled-bracket <[X]>. Johnson also added a prefix symmetry modifier [Y[X]], where Y can either represent symmetry of the Coxeter diagram of [X], or symmetry of the fundamental domain of [X].

For example, in 3D these equivalent rectangle and rhombic geometry diagrams of : CDel branch.pngCDel 3ab.pngCDel 3ab.pngCDel branch.png and CDel node.pngCDel split1.pngCDel nodes.pngCDel split2.pngCDel node.png, the first doubled with square brackets, [[3[4]]] or twice doubled as [2[3[4]]], with [2], order 4 higher symmetry. To differentiate the second, angled brackets are used for doubling, <[3[4]]> and twice doubled as <2[3[4]]>, also with a different [2], order 4 symmetry. Finally a full symmetry where all 4 nodes are equivalent can be represented by [4[3[4]]], with the order 8, [4] symmetry of the square. But by considering the tetragonal disphenoid fundamental domain the [4] extended symmetry of the square graph can be marked more explicitly as [(2+,4)[3[4]]] or [2+,4[3[4]]].

Further symmetry exists in the cyclic and branching , , and diagrams. has order 2n symmetry of a regular n-gon, {n}, and is represented by [n[3[n]]]. and are represented by [3[31,1,1]] = [3,4,3] and [3[32,2,2]] respectively while by [(3,3)[31,1,1,1]] = [3,3,4,3], with the diagram containing the order 24 symmetry of the regular tetrahedron, {3,3}. The paracompact hyperbolic group = [31,1,1,1,1], CDel node.pngCDel branch3.pngCDel splitsplit2.pngCDel node.pngCDel split1.pngCDel nodes.png, contains the symmetry of a 5-cell, {3,3,3}, and thus is represented by [(3,3,3)[31,1,1,1,1]] = [3,4,3,3,3].

An asterisk * superscript is effectively an inverse operation, creating radical subgroups removing connected of odd-ordered mirrors.[7]

Examples:

Example Extended groups and radical subgroups
Extended groups Radical subgroups Coxeter diagrams Index
[3[2,2]] = [4,3] [4,3*] = [2,2] CDel node c1.pngCDel 4.pngCDel node.pngCDel 3s.pngCDel node.png = CDel node c1.pngCDel 2.pngCDel nodeab c1.png 6
[(3,3)[2,2,2]] = [4,3,3] [4,(3,3)*] = [2,2,2] CDel node c1.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 3g.pngCDel node g.png = CDel nodeab c1.pngCDel 2.pngCDel nodeab c1.png 24
[1[31,1]] = [[3,3]] = [3,4] [3,4,1+] = [3,3] CDel node c1.pngCDel 3.pngCDel node c2.pngCDel 4.pngCDel node h0.png = CDel node c1.pngCDel split1.pngCDel nodeab c2.png 2
[3[31,1,1]] = [3,4,3] [3*,4,3] = [31,1,1] CDel node.pngCDel 3s.pngCDel node.pngCDel 4.pngCDel node c1.pngCDel 3.pngCDel node c2.png = CDel node c1.pngCDel branch3 c1.pngCDel splitsplit2.pngCDel node c2.png 6
[2[31,1,1,1]] = [4,3,3,4] [1+,4,3,3,4,1+] = [31,1,1,1] CDel node h0.pngCDel 4.pngCDel node c1.pngCDel 3.pngCDel node c2.pngCDel 3.pngCDel node c3.pngCDel 4.pngCDel node h0.png = CDel nodeab c1.pngCDel split2.pngCDel node c2.pngCDel split1.pngCDel nodeab c3.png 4
[3[3,31,1,1]] = [3,3,4,3] [3*,4,3,3] = [31,1,1,1] CDel node.pngCDel 3s.pngCDel node.pngCDel 4.pngCDel node c1.pngCDel 3.pngCDel node c2.pngCDel 3.pngCDel node c3.png = CDel node c1.pngCDel branch3 c1.pngCDel splitsplit2.pngCDel node c2.pngCDel 3.pngCDel node c3.png 6
[(3,3)[31,1,1,1]] = [3,4,3,3] [3,4,(3,3)*] = [31,1,1,1] CDel node c2.pngCDel 3.pngCDel node c1.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 3g.pngCDel node g.png = CDel nodeab c1.pngCDel split2.pngCDel node c2.pngCDel split1.pngCDel nodeab c1.png 24
[2[3,31,1,1,1]] = [3,(3,4)1,1] [3,(3,4,1+)1,1] = [3,31,1,1,1] CDel node c4.pngCDel 3.pngCDel node c3.pngCDel split1.pngCDel nodeab c1-2.pngCDel 4a4b.pngCDel nodes.png = CDel node c4.pngCDel branch3 c1.pngCDel splitsplit2.pngCDel node c3.pngCDel split1.pngCDel nodeab c2.png 4
[(2,3)[1,131,1,1]] = [4,3,3,4,3] [3*,4,3,3,4,1+] = [31,1,1,1,1] CDel node.pngCDel 3s.pngCDel node.pngCDel 4.pngCDel node c1.pngCDel 3.pngCDel node c2.pngCDel 3.pngCDel node c3.pngCDel 4.pngCDel node h0.png = CDel node c1.pngCDel branch3 c1.pngCDel splitsplit2.pngCDel node c2.pngCDel split1.pngCDel nodeab c3.png 12
[(3,3)[3,31,1,1,1]] = [3,3,4,3,3] [3,3,4,(3,3)*] = [31,1,1,1,1] CDel node c3.pngCDel 3.pngCDel node c2.pngCDel 3.pngCDel node c1.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 3g.pngCDel node g.png = CDel node c3.pngCDel branch3 c1.pngCDel splitsplit2.pngCDel node c2.pngCDel split1.pngCDel nodeab c1.png 24
[(3,3,3)[31,1,1,1,1]] = [3,4,3,3,3] [3,4,(3,3,3)*] = [31,1,1,1,1] CDel node c2.pngCDel 3.pngCDel node c1.pngCDel 4.pngCDel node g.pngCDel 3g.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 3g.pngCDel node g.png = CDel node c1.pngCDel branch3 c1.pngCDel splitsplit2.pngCDel node c2.pngCDel split1.pngCDel nodeab c1.png 120
Extended groups Radical subgroups Coxeter diagrams Index
[1[3[3]]] = [3,6] [3,6,1+] = [3[3]] CDel node c1.pngCDel 3.pngCDel node c2.pngCDel 6.pngCDel node h0.png = CDel node c1.pngCDel split1.pngCDel branch c2.png 2
[3[3[3]]] = [6,3] [6,3*] = [3[3]] CDel node c1.pngCDel 6.pngCDel node.pngCDel 3s.pngCDel node.png = CDel node c1.pngCDel split1.pngCDel branch c1.png 6
[1[3,3[3]]] = [3,3,6] [3,3,6,1+] = [3,3[3]] CDel node c1.pngCDel 3.pngCDel node c2.pngCDel 3.pngCDel node c3.pngCDel 6.pngCDel node h0.png = CDel node c1.pngCDel 3.pngCDel node c2.pngCDel split1.pngCDel branch c3.png 2
[(3,3)[3[3,3]]] = [6,3,3] [6,(3,3)*] = [3[3,3]] CDel node c1.pngCDel 6.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 3g.pngCDel node g.png = CDel node c1.pngCDel splitsplit1.pngCDel branch4 c1.pngCDel splitsplit2.pngCDel node c1.png 24
[1[∞]2] = [4,4] [4,1+,4] = [∞]2 = [∞,2,∞] CDel node c1.pngCDel 4.pngCDel node h0.pngCDel 4.pngCDel node c2.png = CDel labelinfin.pngCDel branch c1-2.pngCDel 2.pngCDel branch c1-2.pngCDel labelinfin.png 2
[2[∞]2] = [4,4] [1+,4,4,1+] = [(4,4,2*)] = [∞]2 CDel node h0.pngCDel 4.pngCDel node c2.pngCDel 4.pngCDel node h0.png = CDel labelinfin.pngCDel branch c2.pngCDel 2.pngCDel branch c2.pngCDel labelinfin.png 4
[4[∞]2] = [4,4] [4,4*] = [∞]2 CDel node c1.pngCDel 4.pngCDel node g.pngCDel 4sg.pngCDel node g.png = CDel labelinfin.pngCDel branch c1.pngCDel 2.pngCDel branch c1.pngCDel labelinfin.png 8
[2[3[4]]] = [4,3,4] [1+,4,3,4,1+] = [(4,3,4,2*)] = [3[4]] CDel node h0.pngCDel 4.pngCDel node c1.pngCDel 3.pngCDel node c2.pngCDel 4.pngCDel node h0.png = CDel node c1.pngCDel split1.pngCDel nodeab c2.pngCDel split2.pngCDel node c1.png = CDel nodeab c1.pngCDel splitcross.pngCDel nodeab c2.png 4
[3[∞]3] = [4,3,4] [4,3*,4] = [∞]3 = [∞,2,∞,2,∞] CDel node c1.pngCDel 4.pngCDel node.pngCDel 3s.pngCDel node.pngCDel 4.pngCDel node c2.png = CDel labelinfin.pngCDel branch c1-2.pngCDel 2.pngCDel labelinfin.pngCDel branch c1-2.pngCDel 2.pngCDel labelinfin.pngCDel branch c1-2.png 6
[(3,3)[∞]3] = [4,31,1] [4,(31,1)*] = [∞]3 CDel node c1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel nodes.png = CDel labelinfin.pngCDel branch c1.pngCDel 2.pngCDel labelinfin.pngCDel branch c1.pngCDel 2.pngCDel labelinfin.pngCDel branch c1.png 24
[(4,3)[∞]3] = [4,3,4] [4,(3,4)*] = [∞]3 CDel node c1.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 4g.pngCDel node g.png = CDel labelinfin.pngCDel branch c1.pngCDel 2.pngCDel labelinfin.pngCDel branch c1.pngCDel 2.pngCDel labelinfin.pngCDel branch c1.png 48
[(3,3)[∞]4] = [4,3,3,4] [4,(3,3)*,4] = [∞]4 CDel node c1.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 3g.pngCDel node g.pngCDel 4.pngCDel node c2.png = CDel labelinfin.pngCDel branch c1-2.pngCDel 2.pngCDel labelinfin.pngCDel branch c1-2.pngCDel 2.pngCDel labelinfin.pngCDel branch c1-2.pngCDel 2.pngCDel labelinfin.pngCDel branch c1-2.png 24
[(4,3,3)[∞]4] = [4,3,3,4] [4,(3,3,4)*] = [∞]4 CDel node c1.pngCDel 4.pngCDel node g.pngCDel 3g.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 4g.pngCDel node g.png = CDel labelinfin.pngCDel branch c1.pngCDel 2.pngCDel labelinfin.pngCDel branch c1.pngCDel 2.pngCDel labelinfin.pngCDel branch c1.pngCDel 2.pngCDel labelinfin.pngCDel branch c1.png 384

Looking at generators, the double symmetry is seen as adding a new operator that maps symmetric positions in the Coxeter diagram, making some original generators redundant. For 3D space groups, and 4D point groups, Coxeter defines an index two subgroup of [[X]], [[X]+], which he defines as the product of the original generators of [X] by the doubling generator. This looks similar to [[X]]+, which is the chiral subgroup of [[X]]. So for example the 3D space groups [[4,3,4]]+ (I432, 211) and [[4,3,4]+] (Pm3n, 223) are distinct subgroups of [[4,3,4]] (Im3m, 229).

Rank one groups

In one dimension, the bilateral group [ ] represents a single mirror symmetry, abstract Dih1 or Z2, symmetry order 2. It is represented as a Coxeter–Dynkin diagram with a single node, CDel node.png. The identity group is the direct subgroup [ ]+, Z1, symmetry order 1. The + superscript simply implies that alternate mirror reflections are ignored, leaving the identity group in this simplest case. Coxeter used a single open node to represent an alternation, CDel node h2.png.

Group Coxeter notation Coxeter diagram Order Description
C1 [ ]+ CDel node h2.png 1 Identity
D2 [ ] CDel node.png 2 Reflection group

Rank two groups

A regular hexagon, with markings on edges and vertices has 8 symmetries: [6], [3], [2], [1], [6]+, [3]+, [2]+, [1]+, with [3] and [1] existing in two forms, depending whether the mirrors are on the edges or vertices.

In two dimensions, the rectangular group [2], abstract D22 or D4, also can be represented as a direct product [ ]×[ ], being the product of two bilateral groups, represents two orthogonal mirrors, with Coxeter diagram, CDel node.pngCDel 2.pngCDel node.png, with order 4. The 2 in [2] comes from linearization of the orthogonal subgraphs in the Coxeter diagram, as CDel node.pngCDel 2x.pngCDel node.png with explicit branch order 2. The rhombic group, [2]+ (CDel node h2.pngCDel 2x.pngCDel node h2.png or CDel node h2.pngCDel 3.pngCDel 2c.pngCDel 3.pngCDel node h2.png), half of the rectangular group, the point reflection symmetry, Z2, order 2.

Coxeter notation to allow a 1 place-holder for lower rank groups, so [1] is the same as [ ], and [1+] or [1]+ is the same as [ ]+ and Coxeter diagram CDel node h2.png.

The full p-gonal group [p], abstract dihedral group D2p, (nonabelian for p>2), of order 2p, is generated by two mirrors at angle π/p, represented by Coxeter diagram CDel node.pngCDel p.pngCDel node.png. The p-gonal subgroup [p]+, cyclic group Zp, of order p, generated by a rotation angle of π/p.

Coxeter notation uses double-bracking to represent an automorphic doubling of symmetry by adding a bisecting mirror to the fundamental domain. For example, [[p]] adds a bisecting mirror to [p], and is isomorphic to [2p].

In the limit, going down to one dimensions, the full apeirogonal group is obtained when the angle goes to zero, so [∞], abstractly the infinite dihedral group D, represents two parallel mirrors and has a Coxeter diagram CDel node.pngCDel infin.pngCDel node.png. The apeirogonal group [∞]+, CDel node h2.pngCDel infin.pngCDel node h2.png, abstractly the infinite cyclic group Z, isomorphic to the additive group of the integers, is generated by a single nonzero translation.

In the hyperbolic plane, there is a full pseudogonal group [iπ/λ], and pseudogonal subgroup [iπ/λ]+, CDel node h2.pngCDel ultra.pngCDel node h2.png. These groups exist in regular infinite-sided polygons, with edge length λ. The mirrors are all orthogonal to a single line.

Group Intl Orbifold Coxeter Coxeter diagram Order Description
Finite
Zn n n• [n]+ CDel node h2.pngCDel n.pngCDel node h2.png n Cyclic: n-fold rotations. Abstract group Zn, the group of integers under addition modulo n.
D2n nm *n• [n] CDel node.pngCDel n.pngCDel node.png 2n Dihedral: cyclic with reflections. Abstract group Dihn, the dihedral group.
Affine
Z ∞• [∞]+ CDel node h2.pngCDel infin.pngCDel node h2.png Cyclic: apeirogonal group. Abstract group Z, the group of integers under addition.
Dih ∞m *∞• [∞] CDel node.pngCDel infin.pngCDel node.png Dihedral: parallel reflections. Abstract infinite dihedral group Dih.
Hyperbolic
Z [πi/λ]+ CDel node h2.pngCDel ultra.pngCDel node h2.png pseudogonal group
Dih [πi/λ] CDel node.pngCDel ultra.pngCDel node.png full pseudogonal group

Rank three groups

Point groups in 3 dimensions can be expressed in bracket notation related to the rank 3 Coxeter groups:

In three dimensions, the full orthorhombic group or orthorectangular [2,2], abstractly Z23, order 8, represents three orthogonal mirrors, (also represented by Coxeter diagram as three separate dots CDel node.pngCDel 2.pngCDel node.pngCDel 2.pngCDel node.png). It can also can be represented as a direct product [ ]×[ ]×[ ], but the [2,2] expression allows subgroups to be defined:

First there is a "semidirect" subgroup, the orthorhombic group, [2,2+] (CDel node.pngCDel 2.pngCDel node h2.pngCDel 2x.pngCDel node h2.png or CDel node.pngCDel 2.pngCDel node h2.pngCDel 3.pngCDel 2c.pngCDel 3.pngCDel node h2.png), abstractly Z2×Z2, of order 4. When the + superscript is given inside of the brackets, it means reflections generated only from the adjacent mirrors (as defined by the Coxeter diagram, CDel node.pngCDel 2.pngCDel node.pngCDel 2.pngCDel node.png) are alternated. In general, the branch orders neighboring the + node must be even. In this case [2,2+] and [2+,2] represent two isomorphic subgroups that are geometrically distinct. The other subgroups are the pararhombic group [2,2]+ (CDel node h2.pngCDel 2x.pngCDel node h2.pngCDel 2x.pngCDel node h2.png or CDel node h2.pngCDel 3.pngCDel 2c.pngCDel 3.pngCDel node h2.pngCDel 3.pngCDel 2c.pngCDel 3.pngCDel node h2.png), also order 4, and finally the central group [2+,2+] (CDel node h2.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel node h2.png or CDel node h2.pngCDel 3.pngCDel 2c.pngCDel 3.pngCDel node h4.pngCDel 3.pngCDel 2c.pngCDel 3.pngCDel node h2.png) of order 2.

Next there is the full ortho-p-gonal group, [2,p] (CDel node.pngCDel 2.pngCDel node.pngCDel p.pngCDel node.png), abstractly Z2×D2p, of order 4p, representing two mirrors at a dihedral angle π/p, and both are orthogonal to a third mirror. It is also represented by Coxeter diagram as CDel node.pngCDel p.pngCDel node.pngCDel 2.pngCDel node.png.

The direct subgroup is called the para-p-gonal group, [2,p]+ (CDel node h2.pngCDel 2x.pngCDel node h2.pngCDel p.pngCDel node h2.png or CDel node h2.pngCDel 3.pngCDel 2c.pngCDel 3.pngCDel node h2.pngCDel p.pngCDel node h2.png), abstractly D2p, of order 2p, and another subgroup is [2,p+] (CDel node.pngCDel 2.pngCDel node h2.pngCDel p.pngCDel node h2.png) abstractly Z2×Zp, also of order 2p.

The full gyro-p-gonal group, [2+,2p] (CDel node h2.pngCDel 2x.pngCDel node h2.pngCDel 2x.pngCDel p.pngCDel node.png or CDel node h2.pngCDel 3.pngCDel 2c.pngCDel 3.pngCDel node h2.pngCDel 2.pngCDel p.pngCDel node.png), abstractly D4p, of order 4p. The gyro-p-gonal group, [2+,2p+] (CDel node h2.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel p.pngCDel node h2.png or CDel node h2.pngCDel 3.pngCDel 2c.pngCDel 3.pngCDel node h4.pngCDel 2x.pngCDel p.pngCDel node h2.png), abstractly Z2p, of order 2p is a subgroup of both [2+,2p] and [2,2p+].

The polyhedral groups are based on the symmetry of platonic solids: the tetrahedron, octahedron, cube, icosahedron, and dodecahedron, with Schläfli symbols {3,3}, {3,4}, {4,3}, {3,5}, and {5,3} respectively. The Coxeter groups for these are: [3,3] (CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png), [3,4] (CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png), [3,5] (CDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png) called full tetrahedral symmetry, octahedral symmetry, and icosahedral symmetry, with orders of 24, 48, and 120.

Pyritohedral symmetry, [3+,4] is an index 5 subgroup of icosahedral symmetry, [5,3].

In all these symmetries, alternate reflections can be removed producing the rotational tetrahedral [3,3]+(CDel node h2.pngCDel 3.pngCDel node h2.pngCDel 3.pngCDel node h2.png), octahedral [3,4]+ (CDel node h2.pngCDel 3.pngCDel node h2.pngCDel 4.pngCDel node h2.png), and icosahedral [3,5]+ (CDel node h2.pngCDel 3.pngCDel node h2.pngCDel 5.pngCDel node h2.png) groups of order 12, 24, and 60. The octahedral group also has a unique index 2 subgroup called the pyritohedral symmetry group, [3+,4] (CDel node h2.pngCDel 3.pngCDel node h2.pngCDel 4.pngCDel node.png or CDel node h2.pngCDel 3.pngCDel node h2.pngCDel 2.pngCDel 4.pngCDel node.png), of order 12, with a mixture of rotational and reflectional symmetry. Pyritohedral symmetry is also an index 5 subgroup of icosahedral symmetry: CDel node n0.pngCDel 5.pngCDel node n1.pngCDel 3.pngCDel node n2.png --> CDel 2 n0.pngCDel node n1.pngCDel 3 n0.pngCDel 4.pngCDel node h2.pngCDel 3 n1.pngCDel 3 n2.pngCDel node h2.png, with virtual mirror 1 across 0, {010}, and 3-fold rotation {12}.

The tetrahedral group, [3,3] (CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png), has a doubling [[3,3]] (which can be represented by colored nodes CDel node c1.pngCDel 3.pngCDel node c2.pngCDel 3.pngCDel node c1.png), mapping the first and last mirrors onto each other, and this produces the [3,4] (CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png or CDel node c2.pngCDel 3.pngCDel node c1.pngCDel 4.pngCDel node.png) group. The subgroup [3,4,1+] (CDel node.pngCDel 3.pngCDel node.pngCDel 2c.pngCDel 4.pngCDel 2c.pngCDel node h2.png or CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h0.png) is the same as [3,3], and [3+,4,1+] (CDel node h2.pngCDel 3.pngCDel node h2.pngCDel 2c.pngCDel 4.pngCDel 2c.pngCDel node h2.png or CDel node h2.pngCDel 3.pngCDel node h2.pngCDel 4.pngCDel node h0.png) is the same as [3,3]+.

Affine

In the Euclidean plane there's 3 fundamental reflective groups generated by 3 mirrors, represented by Coxeter diagrams CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png, CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png, and CDel node.pngCDel split1.pngCDel branch.png, and are given Coxeter notation as [4,4], [6,3], and [(3,3,3)]. The parentheses of the last group imply the diagram cycle, and also has a shorthand notation [3[3]].

[[4,4]] as a doubling of the [4,4] group produced the same symmetry rotated π/4 from the original set of mirrors.

Direct subgroups of rotational symmetry are: [4,4]+, [6,3]+, and [(3,3,3)]+. [4+,4] and [6,3+] are semidirect subgroups.

Semiaffine (frieze groups)
IUC Orb. Geo Sch. Coxeter
p1 ∞∞ p1 C [∞] = [∞,1]+ = [∞+,2,1+] CDel node h2.pngCDel infin.pngCDel node h2.png = CDel node h2.pngCDel infin.pngCDel node h2.pngCDel 2.pngCDel node h0.png
p1m1 *∞∞ p1 C∞v [∞] = [∞,1] = [∞,2,1+] CDel node.pngCDel infin.pngCDel node.png = CDel node.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node h0.png
p11g ∞× p.g1 S2∞ [∞+,2+] CDel node h2.pngCDel infin.pngCDel node h4.pngCDel 2x.pngCDel node h2.png
p11m ∞* p. 1 C∞h [∞+,2] CDel node h2.pngCDel infin.pngCDel node h2.pngCDel 2.pngCDel node.png
p2 22∞ p2 D [∞,2]+ CDel node h2.pngCDel infin.pngCDel node h2.pngCDel 2x.pngCDel node h2.png
p2mg 2*∞ p2g D∞d [∞,2+] CDel node.pngCDel infin.pngCDel node h2.pngCDel 2x.pngCDel node h2.png
p2mm *22∞ p2 D∞h [∞,2] CDel node.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node.png
Affine (Wallpaper groups)
IUC Orb. Geo. Coxeter
p2 2222 p2 [4,1+,4]+ CDel labelh.pngCDel node.pngCDel split1-44.pngCDel branch h2h2.pngCDel label2.png
p2gg 22× pg2g [4+,4+] CDel node h2.pngCDel 4.pngCDel node h4.pngCDel 4.pngCDel node h2.png
p2mm *2222 p2 [4,1+,4] CDel node.pngCDel 4.pngCDel node h2.pngCDel 4.pngCDel node.png
CDel node.pngCDel 4.pngCDel node h0.pngCDel 4.pngCDel node.png
c2mm 2*22 c2 [[4+,4+]] CDel node h4b.pngCDel split1-44.pngCDel nodes h2h2.png
p4 442 p4 [4,4]+ CDel node h2.pngCDel 4.pngCDel node h2.pngCDel 4.pngCDel node h2.png
p4gm 4*2 pg4 [4+,4] CDel node h2.pngCDel 4.pngCDel node h2.pngCDel 4.pngCDel node.png
p4mm *442 p4 [4,4] CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
p3 333 p3 [1+,6,3+] = [3[3]]+ CDel node h0.pngCDel 6.pngCDel node h2.pngCDel 3.pngCDel node h2.png = CDel branch h2h2.pngCDel split2.pngCDel node h2.png
p3m1 *333 p3 [1+,6,3] = [3[3]] CDel node h0.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png = CDel branch.pngCDel split2.pngCDel node.png
p31m 3*3 h3 [6,3+] = [3[3[3]]+] CDel node.pngCDel 6.pngCDel node h2.pngCDel 3.pngCDel node h2.png
p6 632 p6 [6,3]+ = [3[3[3]]]+ CDel node h2.pngCDel 6.pngCDel node h2.pngCDel 3.pngCDel node h2.png
p6mm *632 p6 [6,3] = [3[3[3]]] CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png

Given in Coxeter notation (orbifold notation), some low index affine subgroups are:

Reflective
group
Reflective
subgroup
Mixed
subgroup
Rotation
subgroup
Improper rotation/
translation
Commutator
subgroup
[4,4], (*442) [1+,4,4], (*442)
[4,1+,4], (*2222)
[1+,4,4,1+], (*2222)
[4+,4], (4*2)
[(4,4,2+)], (2*22)
[1+,4,1+,4], (2*22)
[4,4]+, (442)
[1+,4,4+], (442)
[1+,4,1+4,1+], (2222)
[4+,4+], (22×) [4+,4+]+, (2222)
[6,3], (*632) [1+,6,3] = [3[3]], (*333) [3+,6], (3*3) [6,3]+, (632)
[1+,6,3+], (333)
[1+,6,3+], (333)

Rank four groups

Polychoral group tree.png
Subgroup relations

Point groups

Rank four groups defined the 4-dimensional point groups:

Finite groups
[ ]: CDel node.png
Symbol Order
[1]+ 1.1
[1] = [ ] 2.1
[2]: CDel node.pngCDel 2.pngCDel node.png
Symbol Order
[1+,2]+ 1.1
[2]+ 2.1
[2] 4.1
[2,2]: CDel node.pngCDel 2.pngCDel node.pngCDel 2.pngCDel node.png
Symbol Order
[2+,2+]+
= [(2+,2+,2+)]
1.1
[2+,2+] 2.1
[2,2]+ 4.1
[2+,2] 4.1
[2,2] 8.1
[2,2,2]: CDel node.pngCDel 2.pngCDel node.pngCDel 2.pngCDel node.pngCDel 2.pngCDel node.png
Symbol Order
[(2+,2+,2+,2+)]
= [2+,2+,2+]+
1.1
[2+,2+,2+] 2.1
[2+,2,2+] 4.1
[(2,2)+,2+] 4
[[2+,2+,2+]] 4
[2,2,2]+ 8
[2+,2,2] 8.1
[(2,2)+,2] 8
[[2+,2,2+]] 8.1
[2,2,2] 16.1
[[2,2,2]]+ 16
[[2,2+,2]] 16
[[2,2,2]] 32
[p]: CDel node.pngCDel p.pngCDel node.png
Symbol Order
[p]+ p
[p] 2p
[p,2]: CDel node.pngCDel p.pngCDel node.pngCDel 2.pngCDel node.png
Symbol Order
[p,2]+ 2p
[p,2] 4p
[2p,2+]: CDel node.pngCDel 2x.pngCDel p.pngCDel node.pngCDel 2x.pngCDel node.png
Symbol Order
[2p,2+] 4p
[2p+,2+] 2p
[p,2,2]: CDel node.pngCDel p.pngCDel node.pngCDel 2.pngCDel node.pngCDel 2.pngCDel node.png
Symbol Order
[p+,2,2+] 2p
[(p,2)+,2+] 2p
[p,2,2]+ 4p
[p,2,2+] 4p
[p+,2,2] 4p
[(p,2)+,2] 4p
[p,2,2] 8p
[2p,2+,2]: CDel node.pngCDel 2x.pngCDel p.pngCDel node.pngCDel 2.pngCDel node.pngCDel 2.pngCDel node.png
Symbol Order
[2p+,2+,2+]+ p
[2p+,2+,2+] 2p
[2p+,2+,2] 4p
[2p+,(2,2)+] 4p
[2p,(2,2)+] 8p
[2p,2+,2] 8p
[p,2,q]: CDel node.pngCDel p.pngCDel node.pngCDel 2.pngCDel node.pngCDel q.pngCDel node.png
Symbol Order
[p+,2,q+] pq
[p,2,q]+ 2pq
[p+,2,q] 2pq
[p,2,q] 4pq
[(p,2)+,2q]: CDel node.pngCDel p.pngCDel node.pngCDel 2.pngCDel node.pngCDel 2x.pngCDel q.pngCDel node.png
Symbol Order
[(p,2)+,2q+] 2pq
[(p,2)+,2q] 4pq
[2p,2,2q]: CDel node.pngCDel 2x.pngCDel p.pngCDel node.pngCDel 2.pngCDel node.pngCDel 2x.pngCDel q.pngCDel node.png
Symbol Order
[2p+,2+,2q+]+=
[(2p+,2+,2q+,2+)]
pq
[2p+,2+,2q+] 2pq
[2p,2+,2q+] 4pq
[((2p,2)+,(2q,2)+)] 4pq
[2p,2+,2q] 8pq
[[p,2,p]]: CDel node.pngCDel p.pngCDel node.pngCDel 2.pngCDel node.pngCDel p.pngCDel node.png
Symbol Order
[[p+,2,p+]] 2p2
[[p,2,p]]+ 4p2
[[p,2,p]+] 4p2
[[p,2,p]] 8p2
[[2p,2,2p]]: CDel node.pngCDel 2x.pngCDel p.pngCDel node.pngCDel 2.pngCDel node.pngCDel 2x.pngCDel p.pngCDel node.png
Symbol Order
[[(2p+,2+,2p+,2+)]] 2p2
[[2p+,2+,2p+]] 4p2
[[((2p,2)+,(2p,2)+)]] 8p2
[[2p,2+,2p]] 16p2
[3,3,2]: CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.png
Symbol Order
[(3,3)Δ,2,1+]
≅ [2,2]+
4
[(3,3)Δ,2]
≅ [2,(2,2)+]
8
[(3,3),2,1+]
≅ [4,2+]
8
[(3,3)+,2,1+]
= [3,3]+
12.5
[(3,3),2]
≅ [2,4,2+]
16
[3,3,2,1+]
= [3,3]
24
[(3,3)+,2] 24.10
[3,3,2]+ 24.10
[3,3,2] 48.36
[4,3,2]: CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.png
Symbol Order
[1+,4,3+,2,1+]
= [3,3]+
12
[3+,4,2+] 24
[(3,4)+,2+] 24
[1+,4,3+,2]
= [(3,3)+,2]
24.10
[3+,4,2,1+]
= [3+,4]
24.10
[(4,3)+,2,1+]
= [4,3]+
24.15
[1+,4,3,2,1+]
= [3,3]
24
[1+,4,(3,2)+]
= [3,3,2]+
24
[3,4,2+] 48
[4,3+,2] 48.22
[4,(3,2)+] 48
[(4,3)+,2] 48.36
[1+,4,3,2]
= [3,3,2]
48.36
[4,3,2,1+]
= [4,3]
48.36
[4,3,2]+ 48.36
[4,3,2] 96.5
[5,3,2]: CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.png
Symbol Order
[(5,3)+,2,1+]
= [5,3]+
60.13
[5,3,2,1+]
= [5,3]
120.2
[(5,3)+,2] 120.2
[5,3,2]+ 120.2
[5,3,2] 240 (nc)
[31,1,1]: CDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png
Symbol Order
[31,1,1]Δ
≅[[4,2+,4]]+
32
[31,1,1] 64
[31,1,1]+ 96.1
[31,1,1] 192.2
<[3,31,1]>
= [4,3,3]
384.1
[3[31,1,1]]
= [3,4,3]
1152.1
[3,3,3]: CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
Symbol Order
[3,3,3]+ 60.13
[3,3,3] 120.1
[[3,3,3]]+ 120.2
[[3,3,3]+] 120.1
[[3,3,3]] 240.1
[4,3,3]: CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
Symbol Order
[1+,4,(3,3)Δ]
= [31,1,1]Δ
≅[[4,2+,4]]+
32
[4,(3,3)Δ]
= [2+,4[2,2,2]+]
≅[[4,2+,4]]
64
[1+,4,(3,3)]
= [31,1,1]
64
[1+,4,(3,3)+]
= [31,1,1]+
96.1
[4,(3,3)]
≅ [[4,2,4]]
128
[1+,4,3,3]
= [31,1,1]
192.2
[4,(3,3)+] 192.1
[4,3,3]+ 192.3
[4,3,3] 384.1
[3,4,3]: CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
Symbol Order
[3+,4,3+] 288.1
[3,4,3]
= [4,3,3]
384.1
[3,4,3]+ 576.2
[3+,4,3] 576.1
[[3+,4,3+]] 576 (nc)
[3,4,3] 1152.1
[[3,4,3]]+ 1152 (nc)
[[3,4,3]+] 1152 (nc)
[[3,4,3]] 2304 (nc)
[5,3,3]: CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
Symbol Order
[5,3,3]+ 7200 (nc)
[5,3,3] 14400 (nc)

Subgroups

Space groups

Rank four groups as 3-dimensional space groups
Triclinic (1-2)
Coxeter Space group
[∞+,2,∞+,2,∞+] (1) P1
Monoclinic (3-15)
Coxeter Space group
[(∞,2,∞)+,2,∞+] (3) P2
[∞+,2,∞+,2,∞] (6) Pm
[(∞,2,∞)+,2,∞] (10) P2/m
Orthorhombic (16-74)
CDel node.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.png
Coxeter Space group
[∞,2,∞,2,∞]+ (16) P222
[[∞,2,∞,2,∞]]+ (23) I222
[∞+,2,∞,2,∞] (25) Pmm2
[∞,2,∞,2,∞] (47) Pmmm
[[∞,2,∞,2,∞]] (71) Immm
[∞+,2,∞+,2,∞+]
[∞,2,∞,2+,∞]
[∞,2+,∞,2+,∞]
Tetragonal (75-142)
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.png
Coxeter Space group
[(4,4)+,2,∞+] (75) P4
[2+[(4,4)+,2,∞+]] (79) I4
[(4,4)+,2,∞] (83) P4/m
[2+[(4,4)+,2,∞]] (87) I4/m
[4,4,2,∞]+ (89) P422
[2+[4,4,2,∞]]+ (97) I422
[4,4,2,∞+] (99) P4mm
[4,4,2,∞] (123) P4/mmm
[2+[4,4,2,∞]] (139) I4/mmm
[4,(4,2)+,∞] (140) I4/mcm
[4,4,2+,∞]
[(4,4)+,2+,∞]
[4,4,2+,∞+]
[(4,4)+,2+,∞+]
[4+,4+,2+,∞]
[4,4+,2,∞]
[4,4+,2+,∞]
[((4,2+,4)),2,∞]
[4,4+,2,∞+]
[4,4+,2+,∞+]
[((4,2+,4)),2,∞+]
Trigonal (143-167), rhombohedral
Coxeter Space group
Hexagonal (168-194)
CDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.png
[(6,3)+,2,∞+] (168) P6
[(6,3)+,2,∞] (175) P6/m
[6,3,2,∞]+ (177) P622
[6,3,2,∞+] (183) P6mm
[6,3,2,∞] (191) P6/mmm
[(3[3])+,2,∞+]
[3[3],2,∞]
[6,3+,2,∞]
[6,3+,2,∞+]
[3[3],2,∞]+
[3[3],2,∞+]
[(3[3])+,2,∞]
Cubic (195-230)
Group Coxeter Space group Index
[[4,3,4]] [[4,3,4]] (229) Im3m 1
[[4,3,4]]+ (211) I432 2
[[4,3,4]+] (223) Pm3n 2
[[4,3+,4]] (204) I3 2
[[(4,3,4,2+)]] (217) I43m 2
[[4,3+,4]]+ (197) I23 4
[[4,3,4]+]+ (208) P4232 4
[[4,3+,4)]+] (201) Pn43 4
[[(4,3,4,2+)]+] (218) P43n 4
[4,3,4]
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
[4,3,4] (221) Pm3m 2
[4,3,4]+ (207) P432 4
[4,3+,4] (200) Pm3 4
[4,(3,4)+] (226) Fm3c 4
[(4,3,4,2+)] (215) P43m 4
[[{4,(3}+,4)+]] (228) Fd3c 4
[4,3+,4]+ (195) P23 8
[{4,(3}+,4)+] (219) F43c 8
[4,31,1]
CDel node.pngCDel 4.pngCDel node.pngCDel split1.pngCDel nodes.png
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h0.png
[4,31,1] (225) Fm3m 4
[4,(31,1)+] (202) Fm3 8
[4,31,1]+ (209) F432 8
[[3[4]]]
CDel branch.pngCDel 3ab.pngCDel branch.png
[(4+,2+)[3[4]]] (222) Pn3n 2
[[3[4]]] (227) Fd3m 4
[[3[4]]]+ (203) Fd3 8
[[3[4]]+] (210) F4132 8
[3[4]]
CDel branch.pngCDel 3ab.pngCDel branch.png
CDel node h0.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h0.png
[3[4]] (216) F43m 8
[3[4]]+ (196) F23 16

Line groups

Rank four groups also defined the 3-dimensional line groups:

Duoprismatic group

Rank four groups defined the 4-dimensional duoprismatic groups. In the limit as p and q go to infinity, they degenerate into 2 dimensions and the wallpaper groups.

Wallpaper groups

Rank four groups also defined some of the 2-dimensional wallpaper groups, as limiting cases of the four-dimensional duoprism groups:

Subgroups of [∞,2,∞], (*2222) can be expressed down to its index 16 commutator subgroup:

Complex reflections

All subgroup relations on rank 2 Shephard groups.

Coxeter notation has been extended to Complex space, Cn where nodes are unitary reflections of period 2 or greater. Nodes are labeled by an index, assumed to be 2 for ordinary real reflection if suppressed. Complex reflection groups are called Shephard groups rather than Coxeter groups, and can be used to construct complex polytopes.

In , a rank 1 shephard group CDel pnode.png, order p, is represented as p[ ], [ ]p or ]p[. It has a single generator, representing a 2π/p radian rotation in the Complex plane: .

Coxeter writes the rank 2 complex group, p[q]r represents Coxeter diagram CDel pnode.pngCDel 3.pngCDel q.pngCDel 3.pngCDel rnode.png. The p and r should only be suppressed if both are 2, which is the real case [q]. The order of a rank 2 group p[q]r is .[9]

The rank 2 solutions that generate complex polygons are: p[4]2 (p is 2,3,4,...), 3[3]3, 3[6]2, 3[4]3, 4[3]4, 3[8]2, 4[6]2, 4[4]3, 3[5]3, 5[3]5, 3[10]2, 5[6]2, and 5[4]3 with Coxeter diagrams CDel pnode.pngCDel 4.pngCDel node.png, CDel 3node.pngCDel 3.pngCDel 3node.png, CDel 3node.pngCDel 6.pngCDel node.png, CDel 3node.pngCDel 4.pngCDel 3node.png, CDel 4node.pngCDel 3.pngCDel 4node.png, CDel 3node.pngCDel 8.pngCDel node.png, CDel 4node.pngCDel 6.pngCDel node.png, CDel 4node.pngCDel 4.pngCDel 3node.png, CDel 3node.pngCDel 5.pngCDel 3node.png, CDel 5node.pngCDel 3.pngCDel 5node.png, CDel 3node.pngCDel 10.pngCDel node.png, CDel 5node.pngCDel 6.pngCDel node.png, CDel 5node.pngCDel 4.pngCDel 3node.png.

Some subgroup relations among infinite Shephard groups

Infinite groups are 3[12]2, 4[8]2, 6[6]2, 3[6]3, 6[4]3, 4[4]4, and 6[3]6 or CDel 3node.pngCDel 12.pngCDel node.png, CDel 4node.pngCDel 8.pngCDel node.png, CDel 6node.pngCDel 6.pngCDel node.png, CDel 3node.pngCDel 6.pngCDel 3node.png, CDel 6node.pngCDel 4.pngCDel 3node.png, CDel 4node.pngCDel 4.pngCDel 4node.png, CDel 6node.pngCDel 3.pngCDel 6node.png.

Index 2 subgroups exists by removing a real reflection: p[2q]2p[q]p. Also index r subgroups exist for 4 branches: p[4]rp[r]p.

For the infinite family p[4]2, for any p = 2, 3, 4,..., there are two subgroups: p[4]2 → [p], index p, while and p[4]2p[ ]×p[ ], index 2.

Computation with reflection matrices as symmetry generators

A Coxeter group, represented by Coxeter diagram CDel node n0.pngCDel p.pngCDel node n1.pngCDel q.pngCDel node n2.png, is given Coxeter notation [p,q] for the branch orders. Each node in the Coxeter diagram represents a mirror, by convention called ρi (and matrix Ri). The generators of this group [p,q] are reflections: ρ0, ρ1, and ρ2. Rotational subsymmetry is given as products of reflections: By convention, σ0,1 (and matrix S0,1) = ρ0ρ1 represents a rotation of angle π/p, and σ1,2 = ρ1ρ2 is a rotation of angle π/q, and σ0,2 = ρ0ρ2 represents a rotation of angle π/2.

[p,q]+, CDel node h2.pngCDel 3 n0.pngCDel 3 n1.pngCDel p.pngCDel node h2.pngCDel 3.pngCDel q.pngCDel 3 n1.pngCDel 3 n2.pngCDel node h2.png, is an index 2 subgroup represented by two rotation generators, each a products of two reflections: σ0,1, σ1,2, and representing rotations of π/p, and π/q angles respectively.

With one even branch, [p+,2q], CDel node h2.pngCDel 3 n0.pngCDel 3 n1.pngCDel p.pngCDel node h2.pngCDel 2x.pngCDel q.pngCDel node n2.png or CDel node h2.pngCDel 3 n0.pngCDel 3 n1.pngCDel p.pngCDel node h2.pngCDel 2c.pngCDel 2x.pngCDel q.pngCDel node n2.png, is another subgroup of index 2, represented by rotation generator σ0,1, and reflectional ρ2.

With even branches, [2p+,2q+], CDel node h2.pngCDel 3 n0.pngCDel 3 n1.pngCDel 3 n2.pngCDel 2x.pngCDel p.pngCDel node h4.pngCDel 2x.pngCDel q.pngCDel node h2.png, is a subgroup of index 4 with two generators, constructed as a product of all three reflection matrices: By convention as: ψ0,1,2 and ψ1,2,0, which are rotary reflections, representing a reflection and rotation or reflection.

In the case of affine Coxeter groups like CDel node n0.pngCDel 4.pngCDel node n1.pngCDel 4.pngCDel node n2.png, or CDel node n0.pngCDel infin.pngCDel node n1.png, one mirror, usually the last, is translated off the origin. A translation generator τ0,1 (and matrix T0,1) is constructed as the product of two (or an even number of) reflections, including the affine reflection. A transreflection (reflection plus a translation) can be the product of an odd number of reflections φ0,1,2 (and matrix V0,1,2), like the index 4 subgroup CDel node n0.pngCDel 4.pngCDel node n1.pngCDel 4.pngCDel node n2.png: [4+,4+] = CDel node h2.pngCDel 3 n0.pngCDel 3 n1.pngCDel 3 n2.pngCDel 4.pngCDel node h4.pngCDel 4.pngCDel node h2.png.

Another composite generator, by convention as ζ (and matrix Z), represents the inversion, mapping a point to its inverse. For [4,3] and [5,3], ζ = (ρ0ρ1ρ2)h/2, where h is 6 and 10 respectively, the Coxeter number for each family. For 3D Coxeter group [p,q] (CDel node.pngCDel p.pngCDel node.pngCDel q.pngCDel node.png), this subgroup is a rotary reflection [2+,h+].

Coxeter groups are categorized by their rank, being the number of nodes in its Coxeter-Dynkin diagram. The structure of the groups are also given with their abstract group types: In this article, the abstract dihedral groups are represented as Dihn, and cyclic groups are represented by Zn, with Dih1=Z2.

Rank 2

Dihedral groups Cyclic groups
Dihedral symmetry domains 2.png
[2]
Cyclic symmetry 2.png
[2]+
Dihedral symmetry domains 3.png
[3]
Cyclic symmetry 3.png
[3]+
Dihedral symmetry domains 4.png
[4]
Cyclic symmetry 4.png
[4]+
Dihedral symmetry domains 6.png
[6]
Cyclic symmetry 6.png
[6]+

Example, in 2D, the Coxeter group [p] (CDel node.pngCDel p.pngCDel node.png) is represented by two reflection matrices R0 and R1, The cyclic symmetry [p]+ (CDel node h2.pngCDel p.pngCDel node h2.png) is represented by rotation generator of matrix S0,1.

[p], CDel node n0.pngCDel p.pngCDel node n1.png
Reflections Rotation
Name R0
CDel node n0.png
R1
CDel node n1.png
S0,1=R0×R1
CDel node h2.pngCDel p.pngCDel node h2.png
Order 2 2 p
Matrix

[2], CDel node n0.pngCDel 2.pngCDel node n1.png
Reflections Rotation
Name R0
CDel node n0.png
R1
CDel node n1.png
S0,1=R0×R1
CDel node h2.pngCDel 3.pngCDel 2c.pngCDel 3.pngCDel node h2.png
Order 2 2 2
Matrix

[3], CDel node n0.pngCDel 3.pngCDel node n1.png
Reflections Rotation
Name R0
CDel node n0.png
R1
CDel node n1.png
S0,1=R0×R1
CDel node h2.pngCDel 3.pngCDel node h2.png
Order 2 2 3
Matrix

[4], CDel node n0.pngCDel 4.pngCDel node n1.png
Reflections Rotation
Name R0
CDel node n0.png
R1
CDel node n1.png
S0,1=R0×R1
CDel node h2.pngCDel 4.pngCDel node h2.png
Order 2 2 4
Matrix

[6], CDel node n0.pngCDel 6.pngCDel node n1.png
Reflections Rotation
Name R0
CDel node n0.png
R1
CDel node n1.png
S0,1=R0×R1
CDel node h2.pngCDel 6.pngCDel node h2.png
Order 2 2 6
Matrix

[8], CDel node n0.pngCDel 8.pngCDel node n1.png
Reflections Rotation
Name R0
CDel node n0.png
R1
CDel node n1.png
S0,1=R0×R1
CDel node h2.pngCDel 8.pngCDel node h2.png
Order 2 2 8
Matrix

Rank 3

The finite rank 3 Coxeter groups are [1,p], [2,p], [3,3], [3,4], and [3,5].

To reflect a point through a plane (which goes through the origin), one can use , where is the 3×3 identity matrix and is the three-dimensional unit vector for the vector normal of the plane. If the L2 norm of and is unity, the transformation matrix can be expressed as:

[p,2]

Example fundamental domains, [5,2], as spherical triangles

The reducible 3-dimensional finite reflective group is dihedral symmetry, [p,2], order 4p, CDel node n0.pngCDel p.pngCDel node n1.pngCDel 2.pngCDel node n2.png. The reflection generators are matrices R0, R1, R2. R02=R12=R22=(R0×R1)3=(R1×R2)3=(R0×R2)2=Identity. [p,2]+ (CDel node h2.pngCDel p.pngCDel node h2.pngCDel 2x.pngCDel node h2.png) is generated by 2 of 3 rotations: S0,1, S1,2, and S0,2. An order p rotoreflection is generated by V0,1,2, the product of all 3 reflections.

[p,2], CDel node n0.pngCDel p.pngCDel node n1.pngCDel 2.pngCDel node n2.png
Reflections Rotation Rotoreflection
Name R0 R1 R2 S0,1 S1,2 S0,2 V0,1,2
Group CDel node n0.png CDel node n1.png CDel node n2.png CDel node h2.pngCDel p.pngCDel node h2.png CDel node h2.pngCDel 3.pngCDel 2c.pngCDel 3.pngCDel node h2.png
Order 2 2 2 p 2 2p
Matrix

[3,3]

reflection lines for [3,3] = CDel node c1.pngCDel 3.pngCDel node c1.pngCDel 3.pngCDel node c1.png

The simplest irreducible 3-dimensional finite reflective group is tetrahedral symmetry, [3,3], order 24, CDel node n0.pngCDel 3.pngCDel node n1.pngCDel 3.pngCDel node n2.png. The reflection generators, from a D3=A3 construction, are matrices R0, R1, R2. R02=R12=R22=(R0×R1)3=(R1×R2)3=(R0×R2)2=Identity. [3,3]+ (CDel node h2.pngCDel 3.pngCDel node h2.pngCDel 3.pngCDel node h2.png) is generated by 2 of 3 rotations: S0,1, S1,2, and S0,2. A trionic subgroup, isomorphic to [2+,4], order 8, is generated by S0,2 and R1. An order 4 rotoreflection is generated by V0,1,2, the product of all 3 reflections.

[3,3], CDel node n0.pngCDel 3.pngCDel node n1.pngCDel 3.pngCDel node n2.png
Reflections Rotations Rotoreflection
Name R0 R1 R2 S0,1 S1,2 S0,2 V0,1,2
Name CDel node n0.png CDel node n1.png CDel node n2.png CDel node h2.pngCDel 3.pngCDel node h2.png CDel node h2.pngCDel 3.pngCDel 2c.pngCDel 3.pngCDel node h2.png
Order 2 2 2 3 2 4
Matrix

(0,1,−1)n (1,−1,0)n (0,1,1)n (1,1,1)axis (1,1,−1)axis (1,0,0)axis

[4,3]

Reflection lines for [4,3] = CDel node c2.pngCDel 4.pngCDel node c1.pngCDel 3.pngCDel node c1.png

Another irreducible 3-dimensional finite reflective group is octahedral symmetry, [4,3], order 48, CDel node n0.pngCDel 4.pngCDel node n1.pngCDel 3.pngCDel node n2.png. The reflection generators matrices are R0, R1, R2. R02=R12=R22=(R0×R1)4=(R1×R2)3=(R0×R2)2=Identity. Chiral octahedral symmetry, [4,3]+, (CDel node h2.pngCDel 4.pngCDel node h2.pngCDel 3.pngCDel node h2.png) is generated by 2 of 3 rotations: S0,1, S1,2, and S0,2. Pyritohedral symmetry [4,3+], (CDel node n0.pngCDel 4.pngCDel node h2.pngCDel 3.pngCDel node h2.png) is generated by reflection R0 and rotation S1,2. A 6-fold rotoreflection is generated by V0,1,2, the product of all 3 reflections.

[4,3], CDel node n0.pngCDel 4.pngCDel node n1.pngCDel 3.pngCDel node n2.png
Reflections Rotations Rotoreflection
Name R0 R1 R2 S0,1 S1,2 S0,2 V0,1,2
Group CDel node n0.png CDel node n1.png CDel node n2.png CDel node h2.pngCDel 4.pngCDel node h2.png CDel node h2.pngCDel 3.pngCDel node h2.png CDel node h2.pngCDel 3.pngCDel 2c.pngCDel 3.pngCDel node h2.png
Order 2 2 2 4 3 2 6
Matrix

(0,0,1)n (0,1,−1)n (1,−1,0)n (1,0,0)axis (1,1,1)axis (1,−1,0)axis

[5,3]

Reflection lines for [5,3] = CDel node c2.pngCDel 5.pngCDel node c2.pngCDel 3.pngCDel node c2.png

A final irreducible 3-dimensional finite reflective group is icosahedral symmetry, [5,3], order 120, CDel node n0.pngCDel 5.pngCDel node n1.pngCDel 3.pngCDel node n2.png. The reflection generators matrices are R0, R1, R2. R02=R12=R22=(R0×R1)5=(R1×R2)3=(R0×R2)2=Identity. [5,3]+ (CDel node h2.pngCDel 3.pngCDel node h2.pngCDel 3.pngCDel node h2.png) is generated by 2 of 3 rotations: S0,1, S1,2, and S0,2. A 10-fold rotoreflection is generated by V0,1,2, the product of all 3 reflections.

[5,3], CDel node n0.pngCDel 5.pngCDel node n1.pngCDel 3.pngCDel node n2.png
Reflections Rotations Rotoreflection
Name R0 R1 R2 S0,1 S1,2 S0,2 V0,1,2
Group CDel node n0.png CDel node n1.png CDel node n2.png CDel node h2.pngCDel 5.pngCDel node h2.png CDel node h2.pngCDel 3.pngCDel node h2.png CDel node h2.pngCDel 3.pngCDel 2c.pngCDel 3.pngCDel node h2.png
Order 2 2 2 5 3 2 10
Matrix
(1,0,0)n (φ,1,φ−1)n (0,1,0)n (φ,1,0)axis (1,1,1)axis (1,0,0)axis

Rank 4

There are 4 irreducible Coxeter groups in 4 dimensions: [3,3,3], [4,3,3], [31,1,1], [3,4,4], [5,3,3], as well as an infinite family of duoprismatic groups [p,2,q].

[p,2,q]

The duprismatic group, [p,2,q], has order 4pq.

[p,2,q], CDel node n0.pngCDel p.pngCDel node n1.pngCDel 2.pngCDel node n2.pngCDel q.pngCDel node n3.png
Reflections
Name R0 R1 R2 R3
Group element CDel node n0.png CDel node n1.png CDel node n2.png CDel node n3.png
Order 2 2 2 2
Matrix

[[p,2,p]]

The duoprismatic group can double in order, to 8p2, with a 2-fold rotation between the two planes.

[[p,2,p]], CDel node n0.pngCDel p.pngCDel node n1.pngCDel 2.pngCDel node n2.pngCDel p.pngCDel node n3.png
Rotation Reflections
Name T R0 R1 R2=TR1T R3=TR0T
Element CDel node h2.pngCDel 2x.pngCDel node h2.png CDel node n0.png CDel node n1.png CDel node n2.png CDel node n3.png
Order 2 2 2
Matrix

[3,3,3]

Hypertetrahedral symmetry, [3,3,3], order 120, is easiest to represent with 4 mirrors in 5-dimensions, as a subgroup of [4,3,3,3].

[3,3,3], CDel node n0.pngCDel 3.pngCDel node n1.pngCDel 3.pngCDel node n2.pngCDel 3.pngCDel node n3.png
Reflections Rotations Rotoreflections Double rotation
Name R0 R1 R2 R3 S0,1 S1,2 S2,3 S0,2 S1,3 S2,3 V0,1,2 V0,1,3 W0,1,2,3
Name CDel node n0.png CDel node n1.png CDel node n2.png CDel node n3.png CDel node h2.pngCDel 3.pngCDel node h2.png CDel node h2.pngCDel 2x.pngCDel node h2.png CDel node h2.pngCDel 4.pngCDel node h4.pngCDel 2x.pngCDel node h2.png CDel node h2.pngCDel 3.pngCDel node h2.pngCDel 2.pngCDel node.png CDel label1.pngCDel label0.pngCDel branch h4h4.pngCDel 3ab.pngCDel branch h4h4.png
Order 2 2 2 2 3 2 4 6 5
Matrix

(0,0,0,1,-1)n (0,0,1,−1,0)n (0,1,−1,0,0)n (1,−1,0,0,0)n
[[3,3,3]]

The extended group [[3,3,3]], order 240, is doubled by a 2-fold rotation matrix T, here reversing coordinate order and sign: There are 3 generators {T, R0, R1}. Since T is self-reciprocal R3=TR0T, and R2=TR1T.

[[3,3,3]], CDel node n0.pngCDel 3.pngCDel node n1.pngCDel 3.pngCDel node n2.pngCDel 3.pngCDel node n3.png
Rotation Reflections
Name T R0 R1 TR1T=R2 TR0T=R3
Element group CDel node h2.pngCDel 2x.pngCDel node h2.png CDel node n0.png CDel node n1.png CDel node n2.png CDel node n3.png
Order 2 2 2 2 2
Matrix

(0,0,0,1,-1)n (0,0,1,−1,0)n (0,1,−1,0,0)n (1,−1,0,0,0)n

[4,3,3]

A irreducible 4-dimensional finite reflective group is hyperoctahedral group (or hexadecachoric group (for 16-cell), B4=[4,3,3], order 384, CDel node n0.pngCDel 4.pngCDel node n1.pngCDel 3.pngCDel node n2.pngCDel 3.pngCDel node n3.png. The reflection generators matrices are R0, R1, R2, R3. R02=R12=R22=R32=(R0×R1)4=(R1×R2)3=(R2×R3)3=(R0×R2)2=(R1×R3)2=(R0×R3)2=Identity.

Chiral hyperoctahedral symmetry, [4,3,3]+, (CDel node h2.pngCDel 4.pngCDel node h2.pngCDel 3.pngCDel node h2.pngCDel 3.pngCDel node h2.png) is generated by 3 of 6 rotations: S0,1, S1,2, S2,3, S0,2, S1,3, and S0,3. Hyperpyritohedral symmetry [4,(3,3)+], (CDel node n0.pngCDel 4.pngCDel node h2.pngCDel 3.pngCDel node h2.pngCDel 3.pngCDel node h2.png) is generated by reflection R0 and rotations S1,2 and S2,3. An 8-fold double rotation is generated by W0,1,2,3, the product of all 4 reflections.

[4,3,3], CDel node n0.pngCDel 4.pngCDel node n1.pngCDel 3.pngCDel node n2.pngCDel 3.pngCDel node n3.png
Reflections Rotations Rotoreflection Double rotation
Name R0 R1 R2 R3 S0,1 S1,2 S2,3 S0,2 S1,3 S0,3 V1,2,3 V0,1,3 V0,1,2 V0,2,3 W0,1,2,3
Group CDel node n0.png CDel node n1.png CDel node n2.png CDel node n3.png CDel node h2.pngCDel 4.pngCDel node h2.png CDel node h2.pngCDel 3.pngCDel node h2.png CDel node h2.pngCDel 2x.pngCDel node h2.png CDel node h2.pngCDel 4.pngCDel node h4.pngCDel 2x.pngCDel node h2.png CDel node h2.pngCDel 3.pngCDel node h2.pngCDel 2.pngCDel node.png CDel node h2.pngCDel 8.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel node h2.png
Order 2 2 2 2 4 3 2 4 6 8
Matrix

(0,0,0,1)n (0,0,1,−1)n (0,1,−1,0)n (1,−1,0,0)n
[3,31,1]

A half group of [4,3,3] is [3,31,1], CDel node n0.pngCDel 3.pngCDel node n1.pngCDel split1.pngCDel nodes.pngCDel 2 n2.pngCDel 2b n3.png, order 192. It shares 3 generators with [4,3,3] group, but has two copies of an adjacent generator, one reflected across the removed mirror.

[3,31,1], CDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png
Reflections
Name R0 R1 R2 R3
Group CDel node n0.png CDel node n1.png CDel node n2.png CDel node n3.png
Order 2 2 2 2
Matrix

(1,−1,0,0)n (0,1,−1,0)n (0,0,1,−1)n (0,0,1,1)n

[3,4,3]

A irreducible 4-dimensional finite reflective group is Icositetrachoric group (for 24-cell), F4=[3,4,3], order 1152, CDel node n0.pngCDel 3.pngCDel node n1.pngCDel 4.pngCDel node n2.pngCDel 3.pngCDel node n3.png. The reflection generators matrices are R0, R1, R2, R3. R02=R12=R22=R32=(R0×R1)3=(R1×R2)4=(R2×R3)3=(R0×R2)2=(R1×R3)2=(R0×R3)2=Identity.

Chiral icositetrachoric symmetry, [3,4,3]+, (CDel node h2.pngCDel 3.pngCDel node h2.pngCDel 4.pngCDel node h2.pngCDel 3.pngCDel node h2.png) is generated by 3 of 6 rotations: S0,1, S1,2, S2,3, S0,2, S1,3, and S0,3. Ionic diminished [3,4,3+] group, (CDel node n0.pngCDel 3.pngCDel node n1.pngCDel 4.pngCDel node h2.pngCDel 3.pngCDel node h2.png) is generated by reflection R0 and rotations S1,2 and S2,3. A 12-fold double rotation is generated by W0,1,2,3, the product of all 4 reflections.

[3,4,3], CDel node n0.pngCDel 3.pngCDel node n1.pngCDel 4.pngCDel node n2.pngCDel 3.pngCDel node n3.png
Reflections Rotations
Name R0 R1 R2 R3 S0,1 S1,2 S2,3 S0,2 S1,3 S0,3
Element group CDel node n0.png CDel node n1.png CDel node n2.png CDel node n3.png CDel node h2.pngCDel 4.pngCDel node h2.png CDel node h2.pngCDel 3.pngCDel node h2.png CDel node h2.pngCDel 2x.pngCDel node h2.png
Order 2 2 2 2 3 4 3 2
Matrix

(1,−1,0,0)n (0,1,−1,0)n (0,0,1,0)n (−1,−1,−1,−1)n
[3,4,3], CDel node n0.pngCDel 3.pngCDel node n1.pngCDel 4.pngCDel node n2.pngCDel 3.pngCDel node n3.png
Rotoreflection Double rotation
Name V1,2,3 V0,1,3 V0,1,2 V0,2,3 W0,1,2,3
Element group CDel node h2.pngCDel 3.pngCDel node h2.pngCDel 2.pngCDel node.png CDel node h2.pngCDel 12.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel node h2.png
Order 6 12
Matrix

[[3,4,3]]

The group [[3,4,3]] extends [3,4,3] by a 2-fold rotation, T, doubling order to 2304.

[[3,4,3]], CDel node n0.pngCDel 3.pngCDel node n1.pngCDel 4.pngCDel node n2.pngCDel 3.pngCDel node n3.png
Rotation Reflections
Name T R0 R1 R2 = TR1T R3 = TR0T
Element group CDel node h2.pngCDel 2x.pngCDel node h2.png CDel node n0.png CDel node n1.png CDel node n2.png CDel node n3.png
Order 2 2 2 2 2
Matrix

(1,−1,0,0)n (0,1,−1,0)n (0,0,1,0)n (−1,−1,−1,−1)n

[5,3,3]

Stereographic projections
Coxeter 533 order-5 gyration axes.png
[5,3,3]+ 72 order-5 gyrations
Coxeter 533 order-3 gyration axes.png
[5,3,3]+ 200 order-3 gyrations
Coxeter 533 order-2 gyration axes.png
[5,3,3]+ 450 order-2 gyrations
Coxeter 533 all gyration axes.png
[5,3,3]+ all gyrations

The hyper-icosahedral symmetry, [5,3,3], order 14400, CDel node n0.pngCDel 5.pngCDel node n1.pngCDel 3.pngCDel node n2.pngCDel 3.pngCDel node n3.png. The reflection generators matrices are R0, R1, R2, R3. R02=R12=R22=R32=(R0×R1)5=(R1×R2)3=(R2×R3)3=(R0×R2)2=(R0×R3)2=(R1×R3)2=Identity. [5,3,3]+ (CDel node h2.pngCDel 3.pngCDel node h2.pngCDel 3.pngCDel node h2.pngCDel 3.pngCDel node h2.png) is generated by 3 rotations: S0,1 = R0×R1, S1,2 = R1×R2, S2,3 = R2×R3, etc.

[5,3,3], CDel node n0.pngCDel 5.pngCDel node n1.pngCDel 3.pngCDel node n2.pngCDel 3.pngCDel node n3.png
Reflections
Name R0 R1 R2 R3
Element group CDel node n0.png CDel node n1.png CDel node n2.png CDel node n3.png
Order 2 2 2 2
Matrix
(1,0,0,0)n (φ,1,φ−1,0)n (0,1,0,0)n (0,−1,φ,1−φ)n

Rank 8

[34,2,1]

The E8 Coxeter group, [34,2,1], CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png, has 8 mirror nodes, order 696729600 (192x10!). E7 and E6, [33,2,1], CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png, and [32,2,1], CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png can be constructed by ignoring the first mirror or the first two mirrors respectively.

E8=[34,2,1], CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
Reflections
Name R0 R1 R2 R3 R4 R5 R6 R7
Element group CDel node n0.png CDel node n1.png CDel node n2.png CDel node n3.png CDel node n4.png CDel node n5.png CDel node n6.png CDel node n7.png
Order 2 2 2 2 2 2 2 2
Matrix
(1,-1,0,0,0,0,0,0)n (0,1,-1,0,0,0,0,0)n (0,0,1,-1,0,0,0,0)n (0,0,0,1,-1,0,0,0)n (0,0,0,0,1,-1,0,0)n (0,0,0,0,0,1,-1,0)n (0,0,0,0,0,1,1,0)n (1,1,1,1,1,1,1,1)n

Affine rank 2

Affine matrices are represented by adding an extra row and column, the last row being zero except last entry 1. The last column represents a translation vector.

[∞]

The affine group [∞], CDel node n0.pngCDel infin.pngCDel node n1.png, can be given by two reflection matrices, x=0 and x=1.

[∞], CDel node n0.pngCDel infin.pngCDel node n1.png
Reflections Translation
Name R0 R1 S0,1
Element group CDel node n0.png CDel node n1.png CDel node h2.pngCDel infin.pngCDel node h2.png
Order 2 2
Matrix

Hyperplane x=0 x=1

Affine rank 3

[4,4]

The affine group [4,4], CDel node n0.pngCDel 4.pngCDel node n1.pngCDel 4.pngCDel node n2.png, (p4m), can be given by three reflection matrices, reflections across the x axis (y=0), a diagonal (x=y), and the affine reflection across the line (x=1). [4,4]+ (CDel node h2.pngCDel 4.pngCDel node h2.pngCDel 4.pngCDel node h2.png) (p4) is generated by S0,1 S1,2, and S0,2. [4+,4+] (CDel node h2.pngCDel 4.pngCDel node h4.pngCDel 4.pngCDel node h2.png) (pgg) is generated by 2-fold rotation S0,2 and glide reflection (transreflection) V0,1,2. [4+,4] (CDel node h2.pngCDel 4.pngCDel node h2.pngCDel 4.pngCDel node.png) (p4g) is generated by S0,1 and R3. The group [(4,4,2+)] (CDel node.pngCDel split1-44.pngCDel branch h2h2.pngCDel label2.png) (cmm), is generated by 2-fold rotation S1,3 and reflection R2.

[4,4], CDel node n0.pngCDel 4.pngCDel node n1.pngCDel 4.pngCDel node n2.png
Reflections Rotations Glides
Name R0 R1 R2 S0,1 S1,2 S0,2 V0,1,2 V0,2,1
Element group CDel node n0.png CDel node n1.png CDel node n2.png CDel node h2.pngCDel 4.pngCDel node h2.png CDel node h2.pngCDel 2x.pngCDel node h2.png CDel node h2.pngCDel infin.pngCDel node h4.pngCDel 2x.pngCDel node h2.png
Order 2 2 2 4 2 ∞ (2)
Matrix

Hyperplane y=0 x=y x=1

[3,6]

The affine group [3,6], CDel node n0.pngCDel 3.pngCDel node n1.pngCDel 6.pngCDel node n2.png, (p6m), can be given by three reflection matrices, reflections across the x axis (y=0), line y=(√3/2)x, and vertical line x=1.

[3,6], CDel node n0.pngCDel 3.pngCDel node n1.pngCDel 6.pngCDel node n2.png
Reflections Rotations Glides
Name R0 R1 R2 S0,1 S1,2 S0,2 V0,1,2 V0,2,1
Element group CDel node n0.png CDel node n1.png CDel node n2.png CDel node h2.pngCDel 3.pngCDel node h2.png CDel node h2.pngCDel 6.pngCDel node h2.png CDel node h2.pngCDel 2x.pngCDel node h2.png CDel node h2.pngCDel infin.pngCDel node h4.pngCDel 2x.pngCDel node h2.png
Order 2 2 2 3 6 2 ∞ (2)
Matrix

Hyperplane y=0 y=(√3/2)x x=1

[3[3]]

The affine group [3[3]] can be constructed as a half group of CDel node n0.pngCDel 3.pngCDel node n1.pngCDel 6.pngCDel node h0.png. R2 is replaced by R'2 = R2×R1×R2, presented by the hyperplane: y+(√3/2)x=2. The fundamental domain is an equilateral triangle with edge length 2.

[3[3]], CDel node n0.pngCDel split1.pngCDel branch.pngCDel 2 n1.pngCDel 2b n2.png
Reflections Rotations Glides
Name R0 R1 R'2 = R2×R1×R2 S0,1 S1,2 S0,2 V0,1,2 V0,2,1
Element group CDel node n0.png CDel node n1.png CDel node n2.png CDel node h2.pngCDel 3.pngCDel node h2.png CDel node h2.pngCDel infin.pngCDel node h4.pngCDel 2x.pngCDel node h2.png
Order 2 2 2 3 ∞ (2)
Matrix

Hyperplane y=0 y=(√3/2)x y+(√3/2)x=2

Affine rank 4

[4,3,4]

[4,3,4] fundamental domain

The affine group is [4,3,4] (CDel node n0.pngCDel 4.pngCDel node n1.pngCDel 3.pngCDel node n2.pngCDel 4.pngCDel node n3.png), can be given by four reflection matrices. Mirror R0 can be put on z=0 plane. Mirror R1 can be put on plane y=z. Mirror R2 can be put on x=y plane. Mirror R3 can be put on x=1 plane. [4,3,4]+ (CDel node h2.pngCDel 4.pngCDel node h2.pngCDel 3.pngCDel node h2.pngCDel 4.pngCDel node h2.png) is generated by S0,1, S1,2, and S2,3.

[4,3,4], CDel node n0.pngCDel 4.pngCDel node n1.pngCDel 3.pngCDel node n2.pngCDel 4.pngCDel node n3.png
Reflections Rotations Transflections Screw axis
Name R0 R1 R2 R3 S0,1 S1,2 S2,3 S0,2 S0,3 S1,3 T0,1,2 T1,2,3 U0,1,2,3
Element group CDel node n0.png CDel node n1.png CDel node n2.png CDel node n3.png CDel node h2.pngCDel 4.pngCDel node h2.png CDel node h2.pngCDel 3.pngCDel node h2.png CDel node h2.pngCDel 4.pngCDel node h2.png CDel node h2.pngCDel 2x.pngCDel node h2.png CDel node h2.pngCDel 2x.pngCDel node h2.png CDel node h2.pngCDel 2x.pngCDel node h2.png CDel node h2.pngCDel 6.pngCDel node h4.pngCDel 2x.pngCDel node h2.png CDel node h2.pngCDel infin.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel 6.pngCDel node h2.png
Order 2 2 2 2 4 3 4 2 6 ∞ (3)
Matrix

Hyperplane z=0 y=z x=y x=1
[[4,3,4]]

The extended group [[4,3,4]] doubles the group order, adding with a 2-fold rotation matrix T, with a fixed axis through points (1,1/2,0) and (1/2,1/2,1/2). The generators are {R0,R1,T}. R2 = T×R1×T and R3 = T×R0×T.

[[4,3,4]], CDel node n0.pngCDel 4.pngCDel node n1.pngCDel 3.pngCDel node n2.pngCDel 4.pngCDel node n3.png
Rotation Reflections
Name T R0 R1 R2 = T×R1×T R3 = T×R0×T
Element group CDel node h2.pngCDel 2x.pngCDel node h2.png CDel node n0.png CDel node n1.png CDel node n2.png CDel node n3.png
Order 2 2 2 2 2
Matrix

Hyperplane Point (1/2,1/2,1/2)
Axis (-1,0,1)
z=0 y=z x=y x=1

[4,31,1]

[4,31,1] fundamental domain

The group [4,31,1] can be constructed from [4,3,4], by computing [4,3,4,1+], CDel node n0.pngCDel 4.pngCDel node n1.pngCDel 3.pngCDel node n2.pngCDel 4.pngCDel node h0.png, as R'3=R3×R2×R3, with new R'3 as an image of R2 across R3.

[4,31,1], CDel node n0.pngCDel 4.pngCDel node n1.pngCDel split1.pngCDel nodes.pngCDel 2 n2.pngCDel 2b n3.png
Reflections Rotations
Name R0 R1 R2 R'3 S0,1 S1,2 S1,3 S0,2 S0,3 S2,3
Element group CDel node n0.png CDel node n1.png CDel node n2.png CDel node n3.png CDel node h2.pngCDel 3.pngCDel node h2.png CDel node h2.pngCDel 3.pngCDel node h2.png CDel node h2.pngCDel 3.pngCDel node h2.png CDel node h2.pngCDel 2x.pngCDel node h2.png CDel node h2.pngCDel 2x.pngCDel node h2.png CDel node h2.pngCDel 2x.pngCDel node h2.png
Order 2 2 2 2 3 3 3 2
Matrix

Hyperplane z=0 y=z x=y x+y=2

[3[4]]

[3[4]] fundamental domain

The group [3[4]] can be constructed from [4,3,4], by removing first and last mirrors, [1+,4,3,4,1+], CDel node h0.pngCDel 4.pngCDel node n1.pngCDel 3.pngCDel node n2.pngCDel 4.pngCDel node h0.png, by R'1=R0×R1×R0 and R'3=R3×R2×R3.

[3[4]] CDel 2b n1.pngCDel 2 n0.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel 2 n3.pngCDel 2b n2.png
Reflections Rotations
Name R'0 R1 R2 R'3 S0,1 S1,2 S1,3 S0,2 S0,3 S2,3
Element group CDel node n0.png CDel node n1.png CDel node n2.png CDel node n3.png CDel node h2.pngCDel 3.pngCDel node h2.png CDel node h2.pngCDel 3.pngCDel node h2.png CDel node h2.pngCDel 3.pngCDel node h2.png CDel node h2.pngCDel 2x.pngCDel node h2.png CDel node h2.pngCDel 2x.pngCDel node h2.png CDel node h2.pngCDel 2x.pngCDel node h2.png
Order 2 2 2 2 3 3 3 2
Matrix

Hyperplane y=-z y=z x=y x+y=2

Notes

  1. ^ Johnson (2018), 11.6 Subgroups and extensions, p 255, halving subgroups
  2. ^ a b Johnson (2018), pp.231-236, and p 245 Table 11.4 Finite groups of isometries in 3-space
  3. ^ Johnson (2018), 11.6 Subgroups and extensions, p 259, radical subgroup
  4. ^ Johnson (2018), 11.6 Subgroups and extensions, p 258, trionic subgroups
  5. ^ Conway, 2003, p.46, Table 4.2 Chiral groups II
  6. ^ Coxeter and Moser, 1980, Sec 9.5 Commutator subgroup, p. 124–126
  7. ^ Johnson, Norman W.; Weiss, Asia Ivić (1999). "Quaternionic modular groups". Linear Algebra and Its Applications. 295 (1–3): 159–189. doi:10.1016/S0024-3795(99)00107-X.
  8. ^ The Crystallographic Space groups in Geometric algebra, D. Hestenes and J. Holt, Journal of Mathematical Physics. 48, 023514 (2007) (22 pages) PDF [1]
  9. ^ Coxeter, Regular Complex Polytopes, 9.7 Two-generator subgroups reflections. pp. 178–179

References