잘린 24셀 벌집

Truncated 24-cell honeycomb
잘린 24셀 벌집
(이미지 없음)
유형 제복4벌집
슐레플리 기호 t{3,4,3,3}
tr{3,3,4,3}
t2r{4,3,4}
t2r{4,3,31,1}
t{31,1,1,1}
콕시터-딘킨 도표

CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
CDel nodes 11.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
CDel nodes 11.pngCDel split2.pngCDel node 1.pngCDel split1.pngCDel nodes 11.png

4면형 테세락트 Schlegel wireframe 8-cell.png
잘린 24셀 Schlegel half-solid truncated 24-cell.png
세포형 큐브 Hexahedron.png
잘린 팔면체 Truncated octahedron.png
얼굴형 사각형
삼각형
정점수 Truncated 24-cell honeycomb verf.png
사면 피라미드
콕시터 그룹 ~ [3,4,3,3]
~ [4,3,31,1]
~ [4,3,3,4]
~ [31,1,1,1]
특성. 정점 전이

4차원 유클리드 기하학에서 잘린 24셀 벌집합은 균일한 공간을 채우는 벌집합이다.그것은 테서락트잘린 24셀의 세포를 포함하고 있는 보통의 24셀 벌집모양잘라낸 것으로 볼 수 있다.

그것은 스너브 24셀 벌집이라고 불리는 균일한 교대법을 가지고 있다. 시공에서 나온 스너브 입니다.잘린 24셀에는 Schléfli 기호 t{31,1,1,1}가 있으며, 스너브는 s{31,1,1,1}로 표시된다.

대체 이름

  • 잘린 이코시테트라코리아 테트라콤브
  • 잘린 이코시테트라코리아 벌집
  • 캔트런치 16셀 벌집
  • 바이칸티트룬 갈린 큐셀틱 벌집

대칭 구조

이 테셀레이션에는 다섯 가지 다른 대칭 구조가 있다.각 대칭은 24-셀 크기의 색 잘린 24-셀 면의 서로 다른 배열로 나타낼 수 있다.모든 경우에 잘린 24세포 4개와 각 꼭지점마다 1개의 정점이 만나지만 정점 수치는 서로 다른 대칭 생성기를 가진다.

콕시터군 콕시터
도표를 만들다
정점수 꼭지점
형상을 나타내다
대칭
(주문)

= [3,4,3,3]
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png 4: CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
1: CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
Truncated 24-cell honeycomb verf.png CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png, [3,3]
(24)

= [3,3,4,3]
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png 3: CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
1: CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
1: CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.png
Truncated 24-cell honeycomb F4b verf.png CDel node.pngCDel 3.pngCDel node.png, [3]
(6)

= [4,3,3,4]
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png 2,2: CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
1: CDel node.pngCDel 4.pngCDel node 1.pngCDel 2.pngCDel node 1.pngCDel 4.pngCDel node.png
Truncated 24-cell honeycomb C4 verf.png CDel node.pngCDel 2.pngCDel node.png, [2]
(4)

= [31,1,3,4]
CDel nodes 11.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png 1,1: CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
2: CDel nodes 11.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node 1.png
1: CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 2.pngCDel node 1.pngCDel 4.pngCDel node.png
Truncated 24-cell honeycomb B4 verf.png CDel node.png, [ ]
(2)

= [31,1,1,1]
CDel nodes 11.pngCDel split2.pngCDel node 1.pngCDel split1.pngCDel nodes 11.png 1,1,1,1:
CDel nodes 11.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node 1.png
1: CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 2.pngCDel node 1.pngCDel 2.pngCDel node 1.png
Truncated 24-cell honeycomb D4 verf.png [ ]+
(1)

참고 항목

4-공간의 정규 및 균일한 벌집:

참조

  • Coxeter, H.S.M. 정규 폴리토페스, (3판, 1973), Dover 에디션, ISBN0-486-61480-8 페이지 296, 표 II: 일반 허니컴
  • 케일리디스코어: F가 편집한 H. S. M. Coxeter의 선별된 글.아서 셔크, 피터 맥멀런, 앤서니 C.Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN978-0-471-01003-6[1]
    • (용지 24) H.S.M. Coxeter, 정규 반정규 폴리토페스 III, [산술]Zeit. 200 (1988) 3-45]
  • 조지 올셰프스키, 균일 파노플로이드 테트라콤브스, 원고(2006) (11개의 볼록 균일 기울기, 28개의 볼록 균일 벌집, 143개의 볼록 균일 테트라콤) 모델 99
  • Klitzing, Richard. "4D Euclidean tesselations". o4x3x3x4o, x3x3x4o, x3x3x*b3x*b3x, o3o3o4x3x, x3x4o3o - ticot - O99
공간 가족 ~ G}2}}/ F ~ 4 {\ / ~ }
E2 균일 타일링 {3[3]} δ3 Δ3 Δ3 육각형
E3 균일볼록 벌집 {3[4]} δ4 Δ4 Δ4
E4 제복4벌집 {3[5]} δ5 Δ5 Δ5 24셀 벌집
E5 제복5벌집 {3[6]} δ6 Δ6 Δ6
E6 제복6벌집 {3[7]} δ7 Δ7 Δ7 222
E7 제복7허니콤 {3[8]} δ8 Δ8 Δ8 133331
E8 제복8벌집 {3[9]} δ9 Δ9 Δ9 152251521
E9 제복9벌집 {3[10]} δ10 Δ10 Δ10
E10 제복10벌집 {3[11]} δ11 Δ11 Δ11
En-1 제복(n-1)-벌집합 {3[n]} δn Δn Δn 1k22k1k21