2018년 고생물학

2018 in paleomammalogy
고생물학 연도 목록
고생물학에서
2015
2016
2017
2018
2019
2020
2021
고생식물학에서
2015
2016
2017
2018
2019
2020
2021
절지동물 고생물학에서
2015
2016
2017
2018
2019
2020
2021
고생물학에서
2015
2016
2017
2018
2019
2020
2021
고생물학에서
2015
2016
2017
2018
2019
2020
2021
고생물학에서
2015
2016
2017
2018
2019
2020
2021
파충류 고생물학에서
2015
2016
2017
2018
2019
2020
2021
고대 공룡 고생물학에서
2015
2016
2017
2018
2019
2020
2021

고생물 목록에는 2018년에 기술된 새로운 화석 포유류 분류군과 그 해에 발생한 다른 중요한 고생물 발견 및 사건들이 기록되어 있다.

포유류 일반

  • Jones et al. (2018)[1]는 비맘마적 시냅시드에서 척추 영역의 형태학적 다양성과 포유류 척추의 해부학적으로 다른 영역의 진화를 설명하기 위한 의미에 대한 연구를 발표했다.
  • 포유동물 턱의 진화에 대한 연구는 라우텐슐라거 외 연구진(2018)에 의해 발표되었으며, 라우텐슐라거 외 연구진(2018)은 시노돈-모말리아 변환에서 주요 [2]비모말리아포름 분류군에서 동시에 턱관절 스트레스의 감소와 물어뜯는 힘의 증가에 대한 증거를 찾지 못했다.
  • Crompton 외 연구진(2018)[3]은 현존하는 화석 포유동물과 비유상종 신노돈트의 데이터를 기반으로 한 단핵, 다핵동물유골의 뇌 측벽 구조와 기원에 관한 연구를 발표했다.
  • 포유류에 의해 건설되었을 가능성이 가장 높은 것으로 해석되는 척추동물의 굴은 새로운 이치노탁사 다이모넬릭스 마르티니프랙티세미타(후자는 사회성 있는 포유동물의 [4]굴을 나타내는 것으로 보이는)의 이름을 붙인 Raisanen & Hassiotis(2018)에 의해 상부 쥐라기 모리슨 의 소금물 구성원(Utah, 미국)에서 기술되었다.
  • 피레스 외 연구진(2018년)[5]은 백악기/팔레오겐 경계를 넘어 북미의 3대 포유류 군락(다중결핵, 메타테리어유태인)의 다양화 역학에 관한 연구를 발표했다.
  • Hell Creek [6]층과 포트 유니온 층의 툴록 멤버(미국 몬타나)의 4개 지역 데이터를 기반으로, 가장 이른 고생대 생물 회복 기간 동안 포유류의 동물 구성과 구조 변화에 대한 연구가 스미스 외 연구진(2018)에 의해 발표되었다.
  • Leslie et al.(2018)[7]산후안 분지를 가로지르는 To2와 To3 물질 사이의 포유동물 교체에 대한 고해상도 연령 모델을 제시한다.
  • 지난 125,000년에 걸친 5개의 기간에 걸친 포유류의 멸종 선택성, 대륙 크기 분포, 분류학적 다양성에 대한 연구는 Smith et al. (2018)에 의해 발표되었으며, Smith et al. (2018)는 더 큰 종의 포유류가 멸종 위기에 처해있다는 증거를 보고하였다.제4기 말기, 그리고 이 시기의 포유류 멸종 크기 선택성은 지난 6500만년 동안 포유류의 진화에서 [8]전례가 없는 것이었다.
  • Kouvari & van der Geer(2018)[9]플라이스토세 후기와 홀로세기에 멸종된 섬 풍토 포유류 종과 그 체질량, 섬의 크기, 그리고 군도에 인간이 최초로 도착한 것 사이의 관계에 대한 연구를 발표했다.
  • Castro-Insua(2018)[10]은 포유류의 다양화와 기후 틈새 진화 사이의 관계에 대한 연구를 발표했다.
  • Tejada-Lara et al.(2018)[11]는 현존하는 나무늘보와 화석 나무늘보에 초점을 맞추고 단일 동위원소 농축 패턴이 모든 초식 포유류에게 유지된다는 가설을 평가하는 초식 포유류의 조직에 기록된 식이 동위원소 시그니처에 관한 연구를 발표했다.
  • He et al.(2018)[12]은 신생대 동안 중국 내 포유류 동물군의 공간적 분화의 시간적 변화와 중국에서 현대적 공간구조화 포유류 동물군의 출현 시기에 관한 연구를 발표했다.
  • Beck & Baillie(2018)[13]는 조상 또는 근조모형을 보존하는 화석 포유류의 발견이 포유류의 계통 발생의 형태학적 추정과 분자적 추정 간의 차이 해결에 미치는 영향에 관한 연구를 발표했다.

메타테리안

  • Bennett 등(2018)[14]에 의해 새로운 메타테리언 화석 발생 데이터셋을 기반으로 시간에 따른 메타테리언의 글로벌 다양성 변화에 대한 연구가 발표됐다.
  • Eodelphis Browni로 언급되는 새로운 치아 화석에 대한 설명과 스태건티드십이지장 적응의 진화에 대한 연구는 Brannick & Wilson(2018)[15]에 의해 온라인에 게재되었다.
  • 남미 중생대 육식동물 길드의 구조에 대한 스파라소돈트형태학적 다양성과 그 의미에 대한 연구는 Croft et al.(2018)[16]에 의해 발표되었다.
  • 팔로세 산타루시아층(볼리비아)의 알코키루스 오스트랄리스 두개골 부분과 이 종의 계통발생 관계에 대한 연구는 새로운 메타테리아의 슈퍼오더인 푸카델피다(Pucadelphyda)[17]로 명명된 de Muizon et al.(2018)에 의해 발표되었다.
  • 호주 본토 태즈메이니아 데빌 화석의 나이와 호주 본토에서 두 종의 멸종 시기를 추정하는 데 미치는 영향에 대한 연구는 White et al.(2018)[18]에 의해 발표되었다.
  • 화이트, 미첼, 오스틴(2018)[19]은 플라이스토세 후기와 홀로세 동안의 태아신 계통 지리학과 인구학적 역사에 대한 연구를 발표했다.
  • 멸종된 본토와 현존하는 태즈메이니아 개체군을 대표하는 202마리의 게놈에 기초한 지난 30,000년 동안 호주 남부 태즈메이니아 데빌의 계통지리와 인구통계학적 역사에 대한 연구는 Brüniche-Olsen et al.(2018)[20]에 의해 발표되었다.
  • Palaeopotorous Priscus의 계통발생적 관계에 대한 연구는 den Boer & Kear(2018)에 의해 발표되었으며, 이들은 이 분류군을 비대식동물성 [21]대식세포상 유대류로 해석하고 있다.
  • 가나와마야남바루에 속하는 캥거루 화석의 분류학적 현황 수정은 버틀러 연구진(2018년)에 의해 발표되었으며, 버틀러 외 연구진도 가나와마야 쿠페리(옛 남바루속)와 가나와마야 아크리스,[22] 가나와마야의 새로운 화석 물질을 기술하고 있다.
  • 지난 2500만 년 동안 캥거루의 진화에 대한 연구는 화석 이빨의 데이터를 바탕으로 쿠젠스 & 프라이도(2018)[23]에 의해 발표되었습니다.
  • Thylacoleo carnifex의 골격에서 지금까지 누락된 요소에 대한 설명과 이 종의 두개골 후 골격의 해부학과 생체역학에 대한 연구는 Wells & Camens(2018)[24]에 의해 출판되었다.
이름. 참신성 상황 작가들 나이 구성 단위 위치 메모들 이미지들

오스트랄로게일[25]

제너레이션 등 sp. nov.

인쇄중

엥겔만, 아나야 & 크로프트

마이오세(세라발리아)

혼다 그룹

볼리비아

스파라소돈타의 일원.렙토그나투스속은 새로운을 포함한다.2018년에 발표, 2020년에 게재 예정인 기사의 최종판.

오스트로페디오미스속[26]

제너레이션 등 sp. nov.

유효한

카르네이로, 올리베이라 & 고잉

이타보리아어

이타보라이 층

브라질

대퇴골목과 대퇴골목에 속하는 유대목의 일원입니다.모식종은 A. marshalli이다.

베르크비스테륨[27]

제너레이션 등 sp. nov.

유효한

카르네이로

이타보리아어

이타보라이 층

브라질

프로토디델피아과에 속하는 디델피모르피아.모식종은 B. primigenia이다.

클로로사이온[28]

제너레이션 등 sp. nov.

유효한

엥겔만

후기 에오세(머스터산)

아바니코 포메이션

칠리

보헤이에노아목에 속하는 스파라소돈타속.모식종은 C.판타즈마이다.

칼라돌롭스[29]

제너레이션 등 sp. nov.

유효한

초르노굽스키

중기 에오세

케브라다 데 로스 콜로라도스 층

아르헨티나

보나파르트헤리오상과와 프리피돌로피모르피아과에 속하는 폴리돌로피모르피아. 속은 새로운 종인 C. cardonensis를 포함한다.

후모델포돈[30]

제너레이션 등 sp. nov.

유효한

코헨

백악기 후기(터키)

직선 절벽 형성

미국
(유타)

사슴과의 일원입니다.이 속은 새로운 종(F. pulveris)을 포함한다.

갈라티델피아[31]

제너레이션 등 sp. nov.

유효한

Métais

중기 에오세 후기

우준차르시데레층

터키

허페토테리아과의 일원입니다.모식종은 G. minor이다.

허페토륨탭루미[32]

11월 1일

유효한

카스

후기 고생대(카드로니아)

미국
(몬타나
네브래스카
노스다코타 주)

후두오테리움[30]

제너레이션 등 sp. nov.

유효한

코헨

백악기 후기(터키)

직선 절벽 형성

미국
(유타)

사슴과의 일원입니다.이 속은 새로운 종인 H. praeceps를 포함한다.

미니포섬[33]

제너레이션 등 sp. nov.

유효한

궁수

마이오세

리버슬리 세계유산 지역
위파지리층

호주.

새로운 미니포스무과(Minipossumidae)에 속하는 팔랑게리다의 일원입니다.모식종은 M. notioplanetes이다.

오르하니아이아[31]

제너레이션 등 sp. nov.

유효한

Métais

중기 에오세 후기

우준차르시데레층

터키

아나톨리델로피스의 친척입니다.모식종은 O. nauta이다.

페라멜레스파피용[34]

11월 1일

유효한

Travouillon & Phillips

홀로세

늘라보 평원

호주.

긴코 반디쿠트.

푸자토돈[35]

제너레이션 등 sp. nov.

인쇄중

고잉

에오세(Ypresian)

라 메세타층

남극 대륙
(시모어 섬)

아마도 폴리돌로피모르피아의 일원일 것이다.이 속은 새로운 종인 P. 에코포스를 포함한다.2018년에 발표, 2020년에 게재 예정인 기사의 최종판.

히조파스콜로누스은강가바[36]

11월 1일

유효한

맥주

마이오세

리버슬리 사이트

호주.

웜뱃.

쟈네타기[37]

11월 1일

유효한

카르네이로

백악기 후기(세노마니아 후기~코니아 초기)

나투리타층
직선 절벽 형성

미국
(유타)

스파라소돈타의 일원일 수도 있습니다.

유테리아인

  • Gearty, McClain & Payne(2018)[38]은 생물 및 화석 포유류의 체질량 데이터를 바탕으로 수중 포유류의 신체 크기 증가 원인에 대한 연구를 발표했다.
  • Miosene Cerro Azul층(아르헨티나)의 대형 포유동물의 굴에 대한 연구는 Cardonatto & Melchor(2018)[39]에 의해 발표되었다.
  • 헴필리호스 말갈매기, 다이노히푸스 멕시코, 프로토히푸스 기들레이, 곰포테리움 혼드렌시스, 산헤라르도 데 리모니시토(코스타리카)의 라마 헤미아우체니아 베라의 식단과 서식지에 대한 연구가 페레즈페에 의해 발표되었다.
  • 카야 외 연구진(2018년)[41]네오겐구세계 사바나에 사는 포유동물 동물들의 진화와 상호 연관성에 대한 연구를 발표했다.
  • 1500만 년에서 200만 년 전 이베리아 반도에서 온 포유류의 종 다양성 변화와 그 종 다양성에 영향을 미치는 다양한 요인의 조절 역할에 대한 연구는 칸탈라피에드라, 도밍고 & 도밍고(2018)[42]에 의해 발표되었습니다.
  • 마케도니아 자연사 박물관 스코페에 보관된 화석으로 알려진 마케도니아 공화국미오세 포유류 동물군의 체계적 개정판은 Spassov et al.(2018)[43]에 의해 출판되었다.
  • 화석이 있는 지층의 고자기 연대와 시닝 분지(중국 티베탄 고원)의 마이오세 후기 포유동물 화석에 대한 연구는 헨 외 연구진(2018)[44]에 의해 발표되었다.
  • 믿음이(2018년)는 건조 지수, 화석 포유류 치아의 산소 동위 원소의 작문 일부 분류 군에게 술 마시는 행동(치아에 영향을 주는 산소 동위 원소 조성)식생활 개선보다는 물 부족에 의해 비롯된 것도 변경된다고 주장하는 지역 paleoclimate과 물 부족을 복원하는 널리 사용되는 기술을 측정한다.[45][46][47]
  • 북와(우간다) 마이오세 유적지의 포유류 동물군의 개정과 이 동물의 나이에 대한 연구는 코트 외 연구진(2018)에 의해 발표되었으며, 코트 외 연구진은 이들의 발견을 2000만 년에서 1900만 [48]년 사이에 동아프리카에서 상당한 동물군 교체가 일어났을 수 있음을 시사하는 것으로 해석했다.
  • 플리오센과 플라이스토세의 오모-투르카나 분지(동아프리카)에서 대형 포유류의 종과 속 수준의 다양성의 변화에 대한 연구는 Du & Alemseged(2018)[49]에 의해 발표되었다.
  • 곤돌린 동굴(남아공)의 이른바 GD A 동물 집단에 대한 일차적인 설명과 분석은 애덤스(2018)[50]에 의해 출판되었다.
  • Uno et al.(2018)[51]는 치아 마모와 화석 치아의 안정적인 동위원소 데이터로 알 수 있듯이 올두바이 협곡(탄자니아)의 플라이스토세 퇴적물에서 나온 대형 포유동물의 식단에 관한 연구를 발표했다.
  • 올도완 현장 HWK EE(탄자니아 올두바이 협곡)에서 가장 풍부한 유제 분류군의 식단에 대한 연구는 치아의 마모와 안정적인 동위원소 분석으로 나타난다. (2018)[52]
  • 올두바이 협곡 유적지의 새로운 포유동물과 어류에 대한 설명은 이 유적지의 포유동물 집단을 현재의 세렝게티 포유동물 군집과 비교하며, 약 170만-140만 년 전에 이 유적지의 고생태학적 재구성에 대한 의미에 대한 연구는 비비 외 연구([53]2018)에 의해 출판되었다.
  • Pires et al.(2018)[54]는 현존 및 멸종한 포유동물의 종자 분산 거리플라이스토세 메가파우나의 멸종이 종자 분산에 미치는 영향에 관한 연구를 발표했다.
  • Strani et al.(2018)[55]에 의해 발표된 치아 마모로 나타난 이탈리아 폰타나 라누치오(Pontana Ranuccio)의 중기 갱신세 유적지의 유제 식단과 서식지에 대한 연구가 발표됐다.
  • Strani et al.(2018)[56]은 올리볼라(이탈리아 Aulla) 화석 집합체의 치아 마모 패턴과 습도성을 바탕으로 이탈리아 반도의 겔라시아칼라브리아 사이의 통로에서 발생한 환경 변화에 대한 대형 유제류의 반응에 관한 연구를 발표했다.
  • Rodriguez & Mateos(2018)[57]는 유럽 후기 및 중기 갱신세 생태계의 유제류 및 육식동물 운반 능력에 대한 연구를 발표했다.
  • 시닝 연구진(2018년)[58]은 북중국 평야에서 시추된 꽃가루 데이터와 함께 120만 년 전~070만 년 전 아시아 온대 지역의 식물 변화에 대한 연구를 발표했다.
  • Zhu et al. (2018)[59]에 의해 저생식물의 생산성이 예상되는 매머드 스텝 생태계가 어떻게 대형 포유류 초식동물의 높은 다양성과 밀도를 지원할 수 있었는지를 평가하는 연구가 발표되었습니다.
  • 멸종된 초식성 메가파우나 종은 인간에게 [60]최적의 서식지 패치 내에서 지속적으로 희귀했다고 주장하는 카로테누토 연구진(2018)에 의해 유라시아 플라이스토세 후기 24메가파우나 과 호모 사피엔스의 서식 적합성에 대한 공간적 및 시간적 패턴을 모델링한 연구가 발표됐다.
  • 호모 사피엔스출현 이전에 도구를 가진 육식 호미닌이 초대형 초식동물의 멸종에 기여했다는 가설을 검증하기 위해 지난 700만 년 동안 동아프리카 초식동물의 군집에 대한 연구가 페이스 외 연구진([61]2018년)에 의해 발표되었다.
  • 플라이스토세 린이 파우나의 나이와 중국 황토 고원에 있는 포유류 동물군의 연대순서 배열을 확립하기 위한 의미에 대한 연구는 추 [62]연구진(2018)에 의해 발표되었다.
  • Agadjanian & Shunkov(2018)[63][64]아누이 강 유역 및 차리시유역의 구석기 유적지에서 포유동물 군집 구조에 관한 연구를 발표했다.
  • 현존 및 멸종된 코끼리 및 하마의 두개골 형태에 관한 연구는 이들 그룹의 멸종된 섬 왜성 구성원의 두개골이 족보형이라는 가설을 평가한다. van der Geer et al. (2018)[65]가 발표했다.
  • 남미 화석 기록에서 곰이 말 에서 청소했다는 첫 번째 증거는 아빌라 외 연구진(2018)[66]에 의해 브라질 그루타 두 우르소 동굴의 플라이스토세 퇴적물에서 보고되었다.
  • 플라이스토세 말기 북미 인류와 대멸종 이전의 대형 포유류의 개체 동태와 플라이스토세 말기 북미 대형 포유류의 멸종 원인을 추론하는 데 대한 연구(2018년)[67]가 발표됐다.
  • 1929년에 스톡홀름 동물원에서 태어난 회색 바다표범과 고리 바다표범의 잡종 자손과 고생물학 연구에 대한 연구(2018년)는 두 분류군 사이의 형태학이 중간인 화석 표본이 잠재적으로 잡종일 수 있는지 평가하고 전반적인 교배 가능성을 추정한다.인간의 [68]조상을 포함한 포유류의 진화에서요.

Xenarthrans

  • 상완골 모양과 필로사의 현존 및 화석 구성원 간의 기질 탐색 모드 간의 관계에 대한 연구는 de Oliveira & Santos(2018)[69]에 의해 발표되었다.
  • 남미 플라이스토세 후기 화석 이종 15종의 종 분포에 대한 연구는 바렐라 연구진(2018년)[70]에 의해 발표되었다.
  • 올리고세 나무늘보 오로포돈 하팔로이데스옥토돈테리움 그란데의 치아에 있는 마이크로파 패턴에 대한 연구와 이러한 분류군의 식단을 추론하는 의미에 대한 연구는 칼토프&그린([71]2018)에 의해 발표되었다.
  • Glossotherium robustum의 귀 영역 해부학과 이종 관절의 내이 해부학의 진화에 대한 연구는 Boscaini et al.(2018)[72]에 의해 발표되었다.
  • Glossotherium robustum 두개골의 내부 형태에 대한 연구는 Boscaini 등(2018)[73]에 의해 온라인으로 발표되었다.
  • Proeremotherium속 멤버 또는 친척에 속하는 거성 나무늘보의 두개골은 Carlini 등(2018)[74]에 의해 Pliocene San Gregorio Formation(베네수엘라)에서 기술된다.
  • Tambuso et al.(2018)[75]플라이스토세 땅나무의 전방 흉추 융합에 관한 연구를 온라인으로 발표했다.
  • 화석 나무늘보 메가테리움에레모테리움의 발 해부학적 구조와 발이 습관적으로 뒤집힌 정도를 추론하는 의미에 대한 연구는 Toledo et al.([76]2018)에 의해 발표되었다.
  • Megathericulus patagonicus의 새로운 잔해(skull 및 humeri)는 Brandoni et al.[77] (2018)에 의해 Miosene 중기의 케브라다 혼다(볼리비아) 화석 지역에서 기술되었다.
  • 메가테륨 필홀리의 새로운 화석 유적은 부에노스아이레스주(아르헨티나)의 플라이스토세 후기 퇴적물에서 기술되었으며, 아그놀린 외 연구진(2018)은 M. 필홀리를 별개의 [78]종으로 재검증했다.
  • 탈라소크누스의 두개골 구조와 멸종된 수생 나무늘보의 골질량 증가 진화에 대한 연구는 암슨, 빌렛 & 드 뮤종(2018)[79]에 의해 발표되었습니다.
  • 아르헨티나 플라이스토세 말기 Mylodontidae의 두개골 후두부 해부학의 개체발생학적, 종내적, 종간적 변이에 대한 연구는 Brambilla & Ibarra(2018)[80]에 의해 발표되었다.
  • 유사 유전학 및 핵 데이터에 기초한 Mylodon darwinii의 계통학적 관계에 대한 연구는 Delsuc et al.(2018)[81]에 의해 발표되었다.
  • 남미 후기의 플레이스토세(Pleistose)에서 묘사된 글리토테륨의 첫 번째 어린 표본을 나타내는 그루타 두 우르소 동굴(브라질)의 글리토돈 골엽 형태조직학에 대한 연구는 루나 외 연구진(2018)[82]에 의해 발표되었다.
  • Plohophorini 부족에 속하는 우루과이의 글리토돈 분류학적 개정판은 Torino & Perea(2018)[83]에 의해 출판되었다.
  • 진단 차이와 잠재적 시너포맷을 식별하기 위해 남미 글리토돈글리토테륨 종의 형태학을 비교한 연구는 Zurita et al.(2018)[84]에 의해 발표되었다.
  • Panochthus속(Panochthus)에 할당된 팜페안 지역(아르헨티나)의 루자니아 퇴적물에서 추출한 2개의 글리토돈티드 표본의 설골기구의 해부학적 구조에 관한 연구는 Zamorano et al.(2018)[85]에 의해 발표되었다.
  • de Lima & Porpino(2018)[86]는 파녹투스, 글리토테륨파키야마토리움을 포함한 대형 화생 싱게르트의 골엽, 카라파스 및 미관 조각에 벼룩 및 기타 피부 병변에 의한 기생 사례를 보고하였다.
이름. 참신성 상황 작가들 나이 구성 단위 위치 메모들 이미지들

네오글리프타텔루스 우루과이엔시스[87]

11월 1일

유효한

Fernicola

마이오세 후기

카마초 형성

우루과이

Cingulata 멤버입니다.

패터소녹누스[88]

제너레이션 등 sp. nov.

유효한

린콘

마이오세 후기

우루마코층

베네수엘라

메갈로니키과에 속하는 나무늘보.모식종은 P. diazgameroi이다.

우루마코크누스속[88]

제너레이션 등 sp. nov.

유효한

린콘

마이오세 후기

우루마코층

베네수엘라

메갈로니키과에 속하는 나무늘보.모식종은 U. urbanii이다.

시발바오닉스 마이크로캐니누스[89]

11월 1일

유효한

슈타인스벡, 프레이 & 슈타인스벡

플라이스토세 후기

멕시코

메갈로니키과속하는 나무늘보.

아프로테리아인

  • 튀니지 에오세 화석의 알려진 그리고 새롭게 기술된 유골에 기초한 코끼리 랫드인 Chambius kasserinensis의 해부학적 및 계통학적 관계에 대한 연구는 Tabuce(2018)[90]에 의해 발표되었다.
  • Mason, Bennett & Pickford(2018)[91]나미비아Palaeogen에서 온 황금두더지 Namchloris 아레나탄스중이와 내이해부학적 구조를 발표했다.
  • 도미닝(2018년)[92]미국 동부 마이오세 체서피크 그룹의 사이렌 화석과 분류군의 개정판을 발표했다.
  • 두개골 유해를 바탕으로 멸종한 주코시데스의 체질량을 추정하는 방법은 주카, 라이온스, 우헨(2018)[93]에 의해 제시되었다.
  • Sanders(2018)[94]는 코끼리 모양의 주걱턱에서 볼 치아의 변위 메커니즘의 진화에 관한 연구를 발표했다.
  • Choerolophodon corrugatus의 새로운 화석 물질은 Abbas 외 연구진(2018)[95]Dhok Pathan Formation(파키스탄)에서 기술했다.
  • Miose Halamagai Formation(중국 북부 중가르 분지)의 Gomphotherium connexumGomphotherium steinheimense 표본의 치석학에서 보존된 피토석은 G. connexum이 필수 브라우저 또는 혼합 공급기였던 것을 나타내는 것으로 그들의 발견을 Wu 등(2018)에 의해 기술되었다.초식 위주의 먹이를 선호했고, 주로 방목하는 [96]습성을 가진 가장 이른 것으로 알려진 주둥아리과 동물이었다.
  • 중앙 칠레의 Notiomastodon platensis의 식단과 서식지에 대한 연구는 Gonzales-Guarda et al.(2018)[97]에 의해 발표되었다.
  • Smith & Desantis(2018)[98]는 치아 마모로 나타나는 콜롬비아 매머드, 피그미 매머드 및 아메리카 마스토돈의 식단에 대한 연구를 발표했다.
  • Stegodon Orientalis 화석과 아시아 코끼리(Elephas maximus)를 포함한 후기 플라이스토세 원시 화석은 Tong 외 연구진(2018)[99]의해 양자완 동굴(중국 장시)에서 기술되었다.
  • Archidiskodon meridionalis gromovi 분류군의 유효성을 평가하는 연구는 Baygusheva & Titov(2018)[100]에 의해 발표되었다.
  • 서부 시베리아 남부(쿠즈네츠크 분지)의 플레이스토세 하층 퇴적물의 아르키디스코돈속 구성원과 아르키디스코돈-마무투스 혈통의 초기 진화에 대한 영향에 대한 연구는 Foronova(2018)[101]에 의해 발표되었다.
  • 남부 매머드에 대한 재설명은 플라이스토세 유적지 휴에스카르-1(스페인 그라나다주 바자 분지)에서 이루어졌으며, 초기 플라이스토세 말까지 남부 매머드가 스텝 매머드에 의해 대체된 시기와 방식을 추론하기 위한 이들 유적의 의미에 관한 연구(2018년)[102]가 발표됐다.
  • 연구 대상 표본의 털 표본에서 테스토스테론 측정을 목적으로 영구 동토층 보존 시베리아 털 매머드에 대한 연구는 Koren et al.(2018)[103]에 의해 발표되었습니다.
  • 시베리아 북동부의 베렐료크 매머드 유적지의 나이와 기원에 대한 연구는 로즈킨 앤 앤더슨(2018년)[104]에 의해 발표되었으며, 이 연구는 피툴코 외 연구진([105][106]2019년)에 의해 비판을 받고 있다.
  • MIS 2 기간 동안 유럽에서 털복숭이 매머드 범위의 변화에 대한 연구는 Nadachowski et al.(2018)[107]에 의해 발표되었다.
  • 후기 구석기시대 유적지 크라쿠프 스파지스타(폴란드)의 털복숭이 매머드의 생활조건에 대한 연구는 헤인즈, 클리모비츠 & 보이탈([108]2018)에 의해 발표되었다.
  • 메지리히 에피그라베티안 유적지와 부잔카 2, 엘리세비치, 유디노보 유적지의 매머드 뼈의 탄소 및 질소 동위원소 조성에 관한 데이터에서 알 수 있듯이 멸종 직전 중부 동유럽 평원에서 매머드의 특정 틈새에 대한 연구는 출판되었다.Hed by Drucker et al. (2018)[109]
  • 털북숭이 매머드 표본에서 발견된 기생충의 개요는 Serdyuk & Maschenco (2018)[110]에 의해 출판되었다.
  • 시베리아 영구 동토층에서 발견된 여러 냉동 매머드의 지방 및 호미닌에 대한 매머드의 문화적 중요성에 대한 데이터에서 알 수 있듯이 구석기 사회에서 매머드의 식생활 오메가-3 지방산 공급원으로서의 중요성에 대한 연구는 Guil-Guerrero 등([111]2018)에 의해 발표되었다.
  • Palkopou et al.([112]2018)는 현존하는 코끼리과 화석 코끼리과와 미국 마스토돈의 14개 게놈에 기초한 코끼리과의 진화사에 관한 연구를 발표했다.
이름. 참신성 상황 작가들 나이 구성 단위 위치 메모들 이미지들

엘레파스(Palaeoloxodon) 세팔로니쿠스[113]

11월 1일

논쟁의 여지가 있다

테오도로우

갱신세

그리스

세팔로니아 섬에서 온 왜소한 풍토적인 중형 코끼리.Athanassiou, van der Geer & Lyras(2019)는 이 종을 곧게 뻗은 코끼리(Palaeoloxodon antiquus)[114]하위 동의어로 간주했다.

프로미크로게일[115]

제너레이션 등 sp. nov.

유효한

픽포드

마이오세 초기

엘리자베스 베이 포메이션

나미비아

텐렉.모식종은 P. namibiensis이다.

소브라베시렌[116]

제너레이션 등 sp. nov.

유효한

디아즈-베렌게르

에오세(루테티아어)

소브라베층

스페인

계통 발생학적 위치가 불분명한 사이렌입니다.모식종은 S. cardieli이다.

Sobrarbesiren skeletal.png

스타일로퍼스[117]

제너레이션 등 sp. nov.

유효한

게어브란트, 슈미트 & 코시스

에오세(Ypresian)

오르드 압둔 분지

모로코

엠브레티토포다 초기 멤버.모식종은 S. minor이다.

박쥐

  • Amador et al.(2018)[118]현존하는 박쥐뿐만 아니라 Eocene 박쥐세사모이드 분포와 Eoconycoronycteris finneyi와 Icaronycteris 지수.
  • 타바레스 연구진(2018년)[119]은 이 집단이 앤틸리스와 미국 본토 중 어느 지역에서 유래했을 가능성이 더 높은지 평가하는 현존 및 화석 짧은 얼굴 박쥐(Stenodermatinae 아과와 Stenodermatina에 속하는 잎코 박쥐)의 계통 발생에 관한 연구를 발표했다.
  • 예외적으로 보존된 이집트 과일 박쥐의 성체 표본은 동아프리카 또는 중동 개체군보다 형태학적으로 이집트와 더 유사하며, 반 담메 외 연구진([120]2018)에 의해 호크 동굴(예멘 소코트라 섬)의 초기 홀로세 퇴적물에서 기술되었다.
이름. 참신성 상황 작가들 나이 구성 단위 위치 메모들 이미지들

아나톨리아닉테리스[121]

제너레이션 등 sp. nov.

유효한

존스

에오세(루테 후기)

우준차르시데레층

터키

Palaeochiropterygidae과의 일원입니다.모식종은 A. insularis이다.

Mops kerio[122]

11월 1일

유효한

거넬 & 맨티

플리오센

카나포이 사이트

케냐

먼지의 일종입니다.2018년 발표, 2020년 기사명 최종판 게재.

멧돼지투르웰렌시스[122]

11월 1일

유효한

거넬 & 맨티

플리오센

카나포이 사이트

케냐

먼지의 일종입니다.2018년 발표, 2020년 기사명 최종판 게재.

프테로노투스트레버잭소니[123]

11월 1일

유효한

Van Den Hoek Ostende, Van Oijen & Donovan

플라이스토세 후기

자메이카

프테로노투스의 일종입니다.

루세투스파테르소니[122]

11월 1일

유효한

거넬 & 맨티

플리오센

카나포이 사이트

케냐

루세투스의 일종입니다.2018년 발표, 2020년 기사명 최종판 게재.

사콜라이무스케니엔시스[122]

11월 1일

유효한

거넬 & 맨티

플리오센

카나포이 사이트

케냐

사콜라이무스의 일종입니다.2018년 발표, 2020년 기사명 최종판 게재.

투르카넥테리스[122]

제너레이션 등 sp. nov.

유효한

거넬 & 맨티

플리오센

카나포이 사이트

케냐

프테로푸스히프시그나투스 이외의 현존하는 모든 과일 박쥐보다 큰 매우과일 박쥐.속은 새로운 종인 T.harrisi를 포함한다.2018년 발표, 2020년 기사명 최종판 게재.

벌카놉스속[124]

제너레이션 등 sp. nov.

유효한

핸드

마이오세 초기

배녹번 대형

뉴질랜드

뉴질랜드의 짧은 꼬리 박쥐.모식종은 제니와새입니다.

홀수발가락유제류

  • 중국 엘리안 분지([125]Erlian Basin)의 고생대 발끝 홀수 유제류 종의 시간적, 공간적 분포에 대한 연구는 Bai et al.(2018)에 의해 발표되었다.
  • Miocene 코뿔소 Prosantorhinus germanicus의 두 어린 표본의 치아 이상은 Böhmer & Rössner(2018)에 의해 기술되었으며, 이들은 이러한 [126]기형의 가능한 원인을 논의했다.
  • Stephanorhinus kirchbergensis의 턱은 러시아 사하공화국 야나강 무스카야 지역에서 유래한 것으로 Shpansky & Boeskorov(2018년)에 의해 기술되어 있으며, 이 의 최북단 발생을 나타내고 있다.저자들은 코엘로돈타 자코티쿠스양털코뿔소(코뿔소)의 하위 동의어로 해석하기도 한다.
  • 중국 에오세 시대의 새로운 유적을 바탕으로 한 텔레오로푸스 두개골 후골격의 형태학에 관한 연구는 바이, 왕, 멍([128]2018)에 의해 발표되었다.
  • Miose Linxia Basin(중국 간수) 시료의 치석( calculus石)에서 발견된 녹말 과립의 데이터에서 알 수 있듯이 Miose 코뿔소 Diceros gansuensis의 식단에 대한 연구는 Chen et al.(2018)[129]에 의해 발표되었다.
  • Elasmotherium pei의 새로운 화석 물질은 중국 산셴미아오즈이 유적지(니허완 분지)의 하부 플라이스토세(2018년)[130]에서 기술되었다.
  • 말의 진화에서 자리 감소에 대한 연구는 Solounias et al.(2018)[131]에 의해 발표된다.
  • 북미의 화석 말에서 대규모 서식지의 분할 존재에 대한 연구 테스트는 Parker, McHorse & Pierce(2018)[132]에 의해 발표되었다.
  • Sun et al.(2018)[133]에 의해 중국에서 Miocene hipparionine 종인 Sivalhipus ptychodus와 S. platyodus의 해부학에 대한 수정된 진단 및 설명이 발표되었다.
  • 도밍고 외 연구진(2018년)[134]은 Cerro de los Batallones(스페인)의 히파리온속 구성원의 포스트카닌 치아의 개체 발생(광물화, 분출, 치환 패턴)에 관한 연구를 발표했다.
  • 골조직학에서 나타난 다양한 크기의 히파리오닌의 뼈 성장 패턴에 대한 연구 및 마이오세 말기의 유럽 히파리오닌의 크기 감소의 가능한 메커니즘과 근본 추세를 추론하는 의미에 대한 연구는 Orlandi-Oliveras 등(2018)[135]에 의해 발표되었다.
  • Lac Karr(알제리아)의 플라이스토세 유적지에서 발견된 에쿠스과 화석의 리뷰는 샘(2018)[136]에 의해 출판되었다.
  • 탄소 및 산소 동위원소 데이터로 나타나는 미국 남부, 멕시코 및 남아메리카의 플레이스토세 구성원 식단과 서식지에 대한 연구는 Pérez-Crespo et al.(2018)[137]에 의해 발표되었다.
  • 관한 연구 말 시간을 통해 후기 홍적세와 홀로세에 바뀌는 지리학적인 유통, 그리고 고고학적은 고생물학적으로 말에 근거한 유라시아의 전체와paleoenvironmentalpaleoclimatic의 재구축과 함께 후기 제4기를 위해 협회에서 평가를 가로질러 찾는다며 지금(알.(2018년)에 의해 출판되었다.[138]
이름. 참신성 상황 작가들 나이 구성 단위 위치 메모들 이미지들

아디니아 오르도센시스[139]

11월 1일

유효한

바이, 왕, 장

에오세 후기

중국

히라코돈과의 일원입니다.

칠로테리움라이센티[140]

11월 1일

유효한

손, 리, 덩

마이오세 후기

중국

단장아람도돈[141]

11월 1일

바이, 왕, 멍

초기 에오세

헝양 분지

중국

브론토테리아과(Brontotheriidae

에피만테오케라스마에[142]

11월 1일

유효한

에오세(이르딘만한)

위크불락형성

중국

브론토테리아과(Brontotheriidae

에리히푸스[141]

제너레이션 등 sp. nov.

바이, 왕, 멍

초기 에오세

링차 포메이션

중국

에쿠스과의 일원입니다.모식종은 E. tingae이다.

포스터쿠페리아 울란셔헨시스[143]

11월 1일

유효한

에오세

이르딘 만하층
울란시레층

중국

히스패닉오테리움우샤넨스[144]

11월 1일

유효한

Sun

마이오세

우산 부분지

중국

마오브론톱스속[145]

제너레이션 등 sp. nov.

유효한

Averianov

에오세 후기

요간우 포메이션

중국

브론토테리아과(Brontotheriidae모식종은 M. paganus이다.

셀라미노돈[146]

일반 빗새출발

유효한

티시에

에오세 후기 또는 올리고세 초기

루마니아

아미노돈과의 일원입니다.모식종은 "Cadurcodon" zimborensis Codrea & Shuraru(1989)이다.

산시히푸스[147]

일반 빗새출발

유효한

베르노르

마이오세 후기

중국

히파리오니족에 속하는 에쿠스과.모식종은 히파리온 더마토리눔 세프베(1927년).

짝수발톱유제류

  • Merycoidodontoidea의 계통학에서 전형적으로 사용되는 종류의 치아 측정이 유사한 크기의 관련된 짝수 발가락 유제류 사이를 진단할 수 있는지 여부를 평가하는 연구가 Emery-Wetherell & Davis([148]2018)에 의해 발표되었다.
  • 티게니프(알제리아)의 플라이스토세 지역 낙타종 카멜루스 토마스 화석물질과 이 종의 계통발생 관계에 대한 연구는 마르티니 & 제라드(2018)[149]에 의해 발표되었다.
  • 치아 마이크로파 및 안정적인 탄소 동위원소에서 알 수 있듯이 마이오세 말기부터 플라이스토세 전반에 걸쳐 플로리다에서 멸종된 페커리의 식단에 대한 연구는 Bradham et al.(2018)[150]에 의해 발표되었다.
  • 페커리 Mylohyus elmoreiProsthennops serus의 화석은 Douty et al.(2018)에 의해 회색 화석 사이트(미국 테네시주)에서 기술되어 지금까지 [151]보고된 애팔래치아에서 이들 종의 첫 발생을 나타낸다.
  • Metridiochoerus속에 속하는 수체의 부분 두개골은 Lazagabaster(2018)[152]에 의해 말라파 화석지(남아공)에서 기술되었다.
  • Cherin et al. (2018년)[153]는 이탈리아 중부 판탈라(Pantalla)의 초기 플라이스토세(Pleistose)의 새로운 하악골에 대한 설명과 함께, 유라시아와 아프리카 수내 화석 구성원의 계통학적 관계에 대한 연구를 발표했다.
  • 반추동물의 계통발생학, 추정 조상 반추동물의 식단과 서식지, 초원의 화석 기록으로 나타나는 반추동물저밀도 진화에 관한 연구는 Toljagich et al.(2018)[154]에 의해 발표되었다.
  • Rossi, Mello & Schrago(2018)[155]는 반추동물과 태반 포유류의 다른 계통의 진화 중 다양화 속도의 배타성과 변화를 비교한 연구를 발표했다.
  • 두개골과 이빨을 포함한 시보레 도르카테리움 크라섬 화석은 Menecart 등(2018년)[156]에 의해 파룬 오거 채석장(프랑스 콘트르)의 미오세(랑히안)에서 발견되었다.
  • Croitor, Sanz & Daura(2018)는 코바 델 리노세롱(스페인)[157]의 후기의 고유 사슴 하플로이드케로스 메디테라네우스 유골의 형태학적, 인구학적 분석 결과를 보고한다.
  • Rotti et al.(2018)[158]는 치아 에나멜 전자레인지로 나타나는 모렐라푸스의 섭식 습관에 대한 연구를 발표했다.
  • Berlioz et al.(2018)[159]는 유럽의 8개 중후기 빌라프란치아 지역의 Eucladoceros ctenoides 표본의 식가소성에 대한 연구를 발표했다.
  • 와피티(Cervus canadensis)의 앤틀러 유적은 Croitor & Obada(2018)에 의해 후기 구석기시대 클리머우시II(몰도바) 유적에서 기술되어 유라시아 [160]서부 플레이스토세 후기에 와피티가 존재했음을 확인시켜 준다.
  • Pfeifer-Deml(2018)은 휴면 사슴 다마 가이젤라나 화석을 별도의 종으로 키우고 뿔과 골격 특성을 다른 화석 [161]최근의 휴면 사슴과 비교한다.
  • 북해의 모래 퇴적물에서 발견된 어금니의 깊은 주름에 보존된 매스틱화 식물의 데이터에 나타난 아일랜드 고라니(Megaloceros giganteus)의 식단에 관한 연구는 van Geel et al.(2018)[162]에 의해 발표되었다.
  • 나미비아 마이오세프로팔레오릭스 스트로메리의 새로운 화석, 프로팔레오릭스의 두개골 해부학적 재기술, 그리고 이 분류군의 계통발생 관계에 대한 연구는 Sannchez et al.(2018)[163]에 의해 출판되었다.
  • Merceron, Collyn & Geraads(2018)[164]는 치아 마이크로파로 나타나는 기라피과의 현존 및 화석 구성원의 식생활 선호도에 대한 연구를 발표했다.
  • 기린 흔적은 헬름 외 연구진(2018년)에 의해 플라이스토세 웬후이스크랜스 형성(남아공, 브레다스도르프 그룹)에서 기술되어 알려진 [165]기린의 역사적 범위를 증가시키고 있다.
  • 치아 에나멜 탄소 및 산소 동위원소 관계로 나타나는 에오세(Uintan) 욜로메카틀 형성(Mexico)의 렙토메릭스의 식단과 서식지에 대한 연구는 Ferusquia-Villafranca et al.(2018)[166]에 의해 발표될 것이다.
  • 치아 마모로 나타난 플리오-플라이스토세 슝구라층(에티오피아 오모밸리 하부)의 트라겔라피니 부족 구성원의 식생활 선호도에 대한 연구는 Blondel et al.(2018)[167]에 의해 발표되었다.
  • 칭양(중국 간수) 지역의 마이오세 말기 가젤 화석과 이 지역에서 알려진 가젤 종의 분류에 대한 리뷰는 Li et al.(2018)[168]에 의해 출판되었다.
  • 봄복의 멸종된 친척인 안티도르카스 본디의 식생활 생태에 관한 연구(2018년)[169]는 에커앤리-토프(Eker & Lee-Thorp)에 의해 발표되었다.
  • Martin, Mead & Barboza(2018)[170]는 현존 바이슨 및 화석 바이슨 데이터를 바탕으로 기후 변화가 바이슨속 구성원의 신체 크기 진화에 미치는 영향에 대한 연구를 발표했다.
  • 치아 마모로 나타나는 바이슨 안티쿠스의 멕시코 표본 3개의 식생활 선호도와 서식지 사용에 대한 연구는 디아즈-시바하 연구진(2018)[171]에 의해 발표되었다.
  • 다양한 섭식 선호도를 가진 현존하는 소의 하악골 형태 변화와 라에톨리(탄자니아)의 상층 라에톨리(Upper Laetolil Beds)와 상층 은돌라니야(Upper Ndolanya)의 화석 소의 식생 적응과 초기 호민 점령 기간 동안 라에 덮인 식생 정도에 대한 연구, 플럼이 발표했다.er & Raaum (2018)[172]
  • 술라웨시 섬(인도네시아)이 언제 현대적인 형태와 크기를 얻었는지 평가하고, 이 섬에서 가장 큰 세 가지 고유 포유류(바비루사, 셀레베스 사마귀 돼지, 아노아)의 다양화 시기를 결정하는 연구는 Frantz et al.([173]2018)에 의해 발표되었다.
이름. 참신성 상황 작가들 나이 구성 단위 위치 메모들 이미지들

오멜라시아수드레이[174]

11월 1일

유효한

고디노트 등지에르푸르트

에오세

프랑스.

디코부나과의 일원입니다.

바히테리움 트라시엔시스[175]

11월 1일

유효한

메네카르트

에오세(최신 바르토니아 또는 초기 프리아본)

불가리아
세르비아?[176]

TragulinaBachitheriidae에 속하는 초기 반추동물.

칸디아세르부스 데보시[177]

11월 1일

유효한

판 데르 기어

플라이스토세 후기

그리스

구세계 사슴입니다.

칸디아세르부스 리스테리[177]

11월 1일

유효한

판 데르 기어

플라이스토세 후기

그리스

구세계 사슴입니다.

칸디아세르부스 류메리[177]

11월 1일

유효한

판 데르 기어

플라이스토세 후기

그리스

구세계 사슴입니다.

도르카테리움 나마쿠엔시스[178]

11월 1일

유효한

산체스

중기 마이오세

나미비아

쉐보탱.

로피오부노돈후케리[174]

11월 1일

유효한

고디노

에오세

프랑스.

쵸오로타과의 일원입니다.

오릭테로코에루스[179]

제너레이션 등 sp. nov.

유효한

픽포드 & 모랄레스

마이오세 초기

스페인

돌리오코에리과에 속하는 수오이데아과의 일원입니다.모식종은 O. alferezi이다.

페난트라코테륨[180]

제너레이션 등et comb.새출발

유효한

셔러, 리호로 & 베커

올리고세

프랑스.
독일.
파키스탄
루마니아
스위스

안트라코테리온 하마.모식종은 P. bergeri이다; 속은 또한 하마의 Rütimeyer(1857)와 Strategyus Forster-Cooper(1913)를 포함한다.

마사이쿠스속[53]

11월 1일

유효한

비비

갱신세

올두바이 협곡터

탄자니아

알셀라피니 부족에 속하는 보비다과.

프로토디초부네 헬문디[174]

11월 1일

유효한

고디노트 등지에르푸르트

에오세

프랑스.

디코부나과의 일원입니다.

루세르부스기건스[181]

11월 1일

크로이터

갱신세 초기

플라타노초리층

그리스

루세르부스의 한 종입니다.

루세르부스 라둘레스쿠이[181]

11월 1일

크로이터

갱신세 초기

플라타노초리층

그리스
몰도바
루마니아
러시아

루세르부스의 한 종입니다.

스트리프노테륨[182]

제너레이션 등 sp. nov.

유효한

코스타풀로스 & 수비세

마이오세 후기

그리스

보비대과의 일원입니다.속은 새로운 종인 S. exophthalmon을 포함한다.

고래류

  • Bebej & Smith(2018)[183]고고학에서 요추 이동성을 평가하는 연구를 발표했다.
  • 토고 에오세 화석에서 나타난 원형동물 두개골 청각 영역의 해부학적 구조에 대한 연구는 Moulam & Orliac(2018)[184]에 의해 발표되었다.
  • 네오겐을 통해 치아 간결화 경향을 확인하려는 화석과 살아있는 고래의 치아 복잡성에 대한 연구는 Peredo, Peredo & Pyenson(2018)[185]에 의해 발표되었다.
  • Churchill et al. (2018년)[186]에 의해 이빨고래의 두개골 망원경(얼굴뼈가 서로 미끄러지는 것과 거의 같은 방식으로 긴 부분들이 짧은 부분 위로 미끄러지는 것)의 양적 분석과 진화에 대한 연구가 발표되었습니다.
  • 현존 고래와 화석 이빨 고래의 뼈 미로의 형태학에 대한 연구는 Costeur et al.(2018)에 의해 발표되었으며, 이들은 뼈 미로가 이 고래 [187]그룹의 구성원들의 계통 발생과 서식 선호도에 대한 중요한 정보를 제공하는 것으로 그들의 발견을 해석했다.
  • 아고로피우스속 구성원의 새로운 화석은 Boessenecker & Geisler(2018)가 Oligose Chandler Bridge Formation(미국 사우스캐롤라이나주)에서 기술하고 있으며, [188]아고로피우스의 개체 발생학적 변화와 감각 해부학에 대한 새로운 정보를 제공한다.
  • 리 크릭 광산(미국 노스캐롤라이나주)에서 치아 검사를 바탕으로 알려진 피세테로아목 네오진 구성원의 생명력과 생태에 관한 연구는 길버트, 이바니 & 유헨(2018)[189]에 의해 발표되었습니다.
  • 페루의 미오세(토르토니아)에서 발견된 줄기 부리 고래 메사피세투스 그레가리우스의 두개골 후 유골에 대한 설명은 Ramassamy et al.(2018)에 의해 발표되었으며, 이들은 또한 이 종의 [190]목과 앞다리의 근육 구조를 재구성할 것을 제안한다.
  • Llanocetus denticrenatus의 거의 완전한 두개골은 에오세메세타 형성(Antarica)에서 기술되었으며, Fordyce & Marx(2018)는 또한 이 종의 계통학적 관계와 가능성 있는 먹이 전략, 그리고 [191]수염고래의 기원과 자이언티즘의 기원을 추론하는 의미를 연구했다.
  • 아디게아(러시아)의 미오세 후기 수염고래를 중심으로 멸종 및 현존하는 수염고래와 그 조상의 막질 미로의 형태학에 관한 연구는 Tarasenko et al.(2018)[192]에 의해 발표되었다.
  • Herpetocetus개체학적으로 어린 표본은 다나카 & 와타나베(2018)에 의해 호로카오시라리카층(일본 홋카이도) 하부에서 기술되어 지금까지 보고된 [193]서태평양의 Miosen Herpetocetinae의 유일한 기록이다.
  • 호주 남부최신 마이오세(2018년)에서 발견된 카프레아속 구성원의 부분 페리오틱 뼈는 지금까지 보고된 [194]이 속 중 가장 오래된 기록이다.
  • 현존 고래와 멸종 고래의 달팽이관 해부학, 고래가 듣는 달팽이관 형상과 주파수 범위의 관계, 그리고 화석 수염고래에서 매우 낮은 주파수와 초저주파 청력의 발생을 결정하기 위한 이들의 의미에 대한 연구는 Ritshe et al.(2018)[195]에 의해 발표되었습니다.
  • 아풀리아(이탈리아)의 초기 플라이스토세 퇴적물에서 채취한 고래 등딱지 표본의 산소 동위원소 분석은 콜라레타 연구진(2018)에 의해 발표되었으며, 이 연구결과는 지중해의 [196]고위도 지역으로 계절적으로 이주한 고래류에서 서식했음을 나타낸다.
이름. 참신성 상황 작가들 나이 구성 단위 위치 메모들 이미지들

아오델피스속[197]

제너레이션 등 sp. nov.

유효한

비글리노

마이오세 초기

가이만 포메이션

아르헨티나

플라타니스토이데아의 일원입니다.모식종은 A. talen이다.

시우치우레아속[198]

제너레이션 등 sp. nov.

유효한

골딘

중기 마이오세

몰도바

세토테리아과의 일원입니다.모식종은 C. davidi이다.

에디스케투스[199]

제너레이션 등 sp. nov.

유효한

올브라이트, 샌더스 & 가이슬러

올리고세(루페리아)

애슐리 포메이션

미국
(사우스캐롤라이나)

치관류에서 약간 벗어난 조기 이빨고래.속은 새로운 종인 E.osbornei를 포함한다.

아키시마엔시스[200]

11월 1일

유효한

키무라, 하세가와 & 고노

갱신세 초기

일본.

회색 고래의 친척입니다.

하보로델피스[201]

제너레이션 등 sp. nov.

유효한

이치시마

초기 플리오센

일본.

모노돈과의 일원입니다.이 속은 새로운 종인 자포닉스를 포함한다.

코이코이세투스 케르구엘레니[202]

11월 1일

유효한

램버트

불확실, 아마도 마이오세

케르구엘렌 제도까지 370km SWW 해저

부리고래아과에 속하는 부리고래.

콴자세투스[203]

제너레이션 등 sp. nov.

유효한

램버트

마이오세 후기

앙골라

이끼과의 일원입니다.모식종은 K. khoisani입니다.

매크로스퀄로델피스[204]

제너레이션 등 sp. nov.

유효한

비앙누치

마이오세(버디갈리아어)

칠카테이층

페루

스쿠알로델피니과의 일원입니다.모식종은 M. ukupachai입니다.

마야발레나[205]

제너레이션 등 sp. nov.

유효한

페레도

올리고세(루페리아)

알시 포메이션

미국

초기 수염 고래.모식종은 M. nesbittae이다.

살리시케투스[206]

제너레이션 등 sp. nov.

유효한

페레도 & 피엔슨

올리고세 후기

링컨 크릭 포메이션

미국
(워싱턴)

멧돼지과의 일원입니다.모식종은 S. midi이다.

타이키세투스[207]

제너레이션 등 sp. nov.

유효한

다나카 안도 사와무라

중기 마이오세

히카타가와 포메이션

일본.

고래목 수염고래.모식종은 T. inouei입니다.

트락스칼리세투스[208]

제너레이션 등 sp. nov.

유효한

에르난데스 시스네로스

올리고세 후기

엘씨엔층

멕시코

계통 발생학적 위치가 불분명한 채오미스티세티 멤버.모식종은 T. guaycurae이다.

토이파후테아속[209]

제너레이션 등 sp. nov.

유효한

차이앤포다이스

올리고세(차티아)

코코아무 그린산

뉴질랜드

오래된 수염 고래입니다.모식종은 T. waitaki입니다.

위마루[210]

제너레이션 등 sp. nov.

유효한

페레도, 우헨, 넬슨

마이오세 초기

아스토리아 포메이션

미국
(워싱턴)

켄트리오돈과의 일원입니다.치누켄시스속은 새로운 을 포함한다.

육식동물

  • 발리시 외 연구진(2018년)[211]헴필리언 메어텐 층(미국 캘리포니아)의 개과 개과 개과 개과의 체계적인 검사를 발표했다.
  • Balisi, Casey & Van Valkenburgh(2018년)[212]는 신체 크기와 식생활 전문화와 관련된 두개골 및 치아 특성의 발생이 북미 개과의 종 지속 기간 및 지역 범위와 관련이 있는지를 평가하는 연구를 발표했다.
  • Tanis, De Santis & Terry(2018)[213]현존하는 회색 늑대와 코요테의 치아 마이크로파 및 그것이 현존하는 개과 화석의 식생활 연구에 미치는 영향에 대한 연구를 발표했다.
  • Borophagus parvus에 의해 생산되었을 가능성이 있는 Upper Miosene Mehrten Formation(미국 캘리포니아 주)의 코프로라이트 샘플 설명과 이 종의 식단을 추론하는 의미에 대한 연구는 Wang et al. (2018)[214]에 의해 발표되었다.
  • 자바 개화석의 분류법과 상대 연령에 대한 개정판은 판 데르 기어, 리라스 & 볼머(2018)[215]에 의해 발표될 예정이다.
  • Zrzav et et al.(2018)[216]에 의해 Caninae 아과의 현존 및 화석 구성원의 계통학적 관계에 대한 연구가 발표되었다.
  • 레이나(스페인)의 플리오센 유적지에서 발견된 Nycterutes속 구성원의 새로운 화석과 유라시아의 Nycterutes의 진화사를 추론하기 위한 그들의 의미에 대한 연구는 Bartolini Lucenti, Rook & Morales(2018)[217]에 의해 출판되었다.
  • 자칼과 유사한 포식자의 화석 발자국은 맥캔 외 연구진(2018)[218]이 소르바스 분지(스페인)의 소르바스 멤버로부터 기술했다.
  • C. variabilisCanis mosbacensis의 [219]아종으로 간주Jiangzuo et al.(2018)는 Canis variabilis의 화석과 Canis속 플레이스토세 구성원의 형태형 변화에 대한 연구를 발표했다.
  • 화석과 현대 북미 회색 늑대의 사지뼈 형태학적 다양성에 대한 연구는 토미야 & 미헨(2018)[220]에 의해 발표되었다.
  • 메코지와 바르톨리니 루센티(2018년)[221]는 이탈리아 북부 및 남부 지역의 다른 개체군과 비교하여 아베트라나(이탈리아)에서 온 플레이스토세 후기 회색 늑대의 형태학적 및 형태학적 변동성에 대한 연구를 발표했다.
  • Ni Leathlobhair et al. (2018)[222]는 9000년에 걸친 고대 북미 및 시베리아 개로부터 추출된 미토콘드리아 및 핵 게놈의 염기서열 데이터를 바탕으로 유럽 식민지 도래 이전 아메리카에 살았던 개들의 진화 역사에 대한 연구를 발표했다.
  • 신석기 시대근동 농부와 관련된 개가 다른 가축과 함께 유럽으로 유입되었다는 가설을 실험한 유라시아 전역의 37개 고고학 유적지(상기 구석기 시대부터 청동기 시대까지)의 고대 개들의 미토콘드리아 DNA 염기서열에 대한 연구는 올리비에 외 연구진([223]2018)에 의해 발표되었다.
  • Balme, O'Connor & Fallon(2018년)[224]은 호주 늘라보 평원에 있는 마두라 동굴의 딩고 뼈의 나이와 도착 지점에서 호주 전역에 퍼질 가능성이 있는 딩고 비율을 추론하는 데 미치는 영향에 대한 연구를 발표했다.
  • 중국 광시(廣西) 레이(ye)현에서 발견된 약 22,000년 된 자이언트 판다 표본의 완전한 미토콘드리아 게놈은 고 외 연구진(2018년)[225]에 의해 배열되었다.
  • 펠루시다 동굴(캐나다 밴쿠버 섬)의 짧은 얼굴 곰(Arctodus simus)과 불곰(Ursus arctos) 화석의 연대에 대한 연구는 Steffen & Fulton(2018)[226]에 의해 발표되었다.
  • 폴란드 클레트노(Kletno)의 Jaskinia Niedwwiedzia(곰 동굴)에서 발견된 플레이스토세 곰(Ursus ingressus)의 생활 조건에 대한 연구는 그들의 뼈에 해리스 라인의 빈도로 나타나 있다. (2018)[227]
  • 동위원소 데이터에 기초한 카르파티아 산맥의 4개 MIS 3 현장의 동굴 곰의 식단에 대한 연구는 Robu 등(2018)[228]에 의해 발표되었다.
  • 플레이스토세 후기 동굴 곰 4마리에서 나온 여러 가지 게놈 데이터는 동굴 곰이 플레이스토세 기간 동안 갈색 과 교배되었으며 동굴 곰의 DNA 조각이 여전히 살아있는 갈색 [229]곰의 게놈에 남아 있다고 보고한 바로우 연구진(2018)에 의해 제시되었다.
  • Zhoukoudian[230]곰 화석은 Jiangzuo et al.(2018)에 의해 수정본으로 발표되었으며, Jiangzuo et al.(2018)은 Zhoukoudian의 Loc. 1에 Ursus deningeri의 존재를 명확히 확인했다.
  • 동굴 곰 대퇴골의 뼈 조직학과 동굴 곰의 성장과 생활 이력 변수를 추론하기 위한 의미에 대한 연구는 Veitschegger et al.(2018)[231]에 의해 발표되었다.
  • 바리쉬니코프, 푸자첸코, 바리쉬니코바(2018)[232]는 동굴과 불곰의 하악골과 그 조상(우르수스 미니무스우르수스 에트루쿠스)의 형태학적 변동성에 대한 연구를 발표했다.
  • Law, Slater & Mehta(2018)[233]는 현존하는 화석 분류군 데이터를 바탕으로 족장육식동물 진화에 따른 혈통 다양화와 체질량 및 길이의 다양성에 관한 연구를 발표했다.
  • Tarquini et al.(2018)[234]에 의해 화석 프로키오나스과, 파라히에노돈, 테트라프로토모의 체질량을 추정하는 연구가 발표되었다.
  • 나수아속프로키온속 화석은 지금까지 [235]보고된 남미의 프로키온류 중 가장 오래된 기록인 루이즈-라모니, 린콘, 몬테라노-발레스테로스(2018)에 의해 오로쿠알 지방의 엘 브렐(베네수엘라)의 마르플라탄 단계에서 기술되었다.
  • 잘 보존된 첫 번째 유골 렙타르크투스 오리건엔시스 화석은 칼레드, 켈 & 데이비스(2018)[236]에 의해 Miocene Mascall Formation(미국, Oregon)에서 발견되었다.
  • Miosene 유스텔리드 Semantor macruus의 뒷다리 관절 형태학 및 이동성에 대한 연구는 Lavrov, Tarasenko 및 Blasenco(2018)[237]에 의해 발표되었다.
  • 스페인 마이오세 초기 이베리티스 아잔제(I. Buloti)의 새로운 화석 물질에 대한 기술, 이베리티스 해부학에 대한 새로운 정보를 제공하고, 이 속들의 계통학적 관계에 대한 연구는 발렌치아노 연구(2018)[238]에 의해 온라인에 게재되었다.
  • Boessenecker(2018년)에 의해 중기의 플레이스토세 메르세드 형성(미국 캘리포니아)에서 해달의 친척인 엔히드라속(Enhydra)의 대퇴골이 기술되어 지금까지 [239]보고된 강력한 지질 연대 제어와 함께 태평양에서 엔히드라에 대한 가장 오래된 기록을 나타낸다.
  • 에날리아르콕토스속 새 표본은 미오세 스쿠너 걸치층(미국 캘리포니아), 올리고세 야키나층(미국 오레곤), 미오세 아스토리아층(미국 오레곤)에서 Poust & Boessenecker에 의해 설명되며, 2018년 지리적으로 확장된다.
  • Enaliarctos diaci와 현존하는 포카인 귀없는 물개의 앞다리 형태학, 현존하는 포카인 물개에 의한 먹이 확보 및 찢기 위한 앞다리 사용, 초기 피니피드의 먹이행동 유추에 관한 연구는 Hocking et al.(2018)[241]에 의해 발표되었다.
  • 슬로바키아의 미오세 때 발견된 귀 없는 물개 데비노포카 클레이튼이의 첫 번째 하악골에 대한 해부학적 설명은 Rahmat & Koretsky(2018)[242]에 의해 출판되었다.
  • 모나키아과에 속하는 귀 없는 바다표범의 상완골북해[243]최신부터 후기까지의 최초의 모나키네 표본을 나타내는 드와엘, 램버트, 루위(2018)의 플라오센(Piacenzian) 릴로 형성(벨기에)에서 기술된다.
  • 스페인 플리오센에서 호미포카속으로 분류된 화석 표본이 Rahmat et al.(2018)에 의해 기술되어 있으며, 플리오센속 [244]최초의 유럽 기록이다.
  • 벨레스-후아베(2018)[245]는 오도베니드 네오테리움 미룸의 하악골 형태학 및 다른 피니피드를 대표하는 캘리포니아의 Miose Sharktooth Hill Bonebed의 하악골 친화성에 대한 연구를 발표했다.
  • 온토세투스 에몬시의 새로운 표본은 Boessencker, Boessencker & Geisler(2018)가 오스틴 샌드 피트(미국 사우스캐롤라이나주 리치빌)에서 설명한 것으로,[246] 지금까지 보고된 대서양 연안 평야에서 발견된 O. 에몬시의 가장 어린 기록을 나타낸다.
  • 플라이스토세 하이에나가 작은 설치류를 잡아먹는 증거는 윌리엄스 외 연구진(2018)[247]에 의해 Bois Roche 동굴 사이트(프랑스)에서 보고되었다.
  • 자소브스카 동굴(슬로바키아)의 청소년 동굴 하이에나의 외부 뇌 형태에 대한 연구는 페트로비치 외 연구진(2018)[248]에 의해 발표되었다.
  • 쿠거의 두개골은 치멘토 & 돈다스(2018)가 아르헨티나플레이스토세(엔세나단)에서 기술한 것으로,[249] 남미 플라이스토세 말기 이전의 쿠가에 대한 최초의 명확한 기록을 나타낸다.
  • 의 모양과 뼈가 앙상하전정계의 치수에 치타의 내이에 관한 연구, 다른 현존하는 felids과 멸종된 거대한 치타(Acinonyx pardinensis)과 프로아 일루 루스 lemanensis에서 전정 시스템이 맡았고, 치타의 전정계 Grohé, 리가 출판의 발전에와 그것을 비교함;플린(.2018년를 참조해 주세요.[250]
  • 이전에 판타라 곰바조엔시스 으로 분류된 몬테아르젠타리오(이탈리아)의 후기 빌라프란치아 유적지에서 발견된 대형 펠리드의 일부 두개골에 대한 설명은 Cherin et al.(2018)에 의해 발표되었으며, Cherin et al.(2018)는 이 표본(기존에는 P곰바조엔시스 으로 언급되었던 일부 이탈리아 자료)을 P.[251]
  • 자파드네 타트라 산맥(슬로바키아)의 메드베디아 동굴에 있는 적어도 4마리의 성인 동굴 사자(판테라 스펠레아)의 화석과 이 분류군의 구성원의 범위와 사회적 행동에 대한 연구는 사볼, 굴라르 & 호바트(2018)[252]에 의해 출판되었다.
  • 유라시아에서 가장 큰 화석 사자 매장지 중 하나인 남우랄의 이마나이 동굴에서 발견된 최소 11명의 화석 사자 개인에 속하는 뼈에 대한 연구는 Gimranov 등([253]2018)에 의해 발표되었다.
  • 두개골 길이 면에서 미국 사자의 큰 표본에 필적하고 현존하는 사자의 알려진 두개골보다 상당히 큰 사자의 두개골은 케냐플라이스토세(2018년)[254]에 의해 기술되었다.
  • Pajmans et al. (2018년)[255]는 현대 표범 분포 전체에 걸친 역사적 표본의 미토게놈 염기서열 데이터와 코카서스와 중앙유럽의 플라이스토세 후기의 유적에 기초한 표범역사적 생물지리학에 관한 연구를 발표했다.
  • 아르헨티나에서 재규어의 최북단 화석 기록은 로드리게스 외 연구진([256]2018년)에 의해 플라이스토세 후기-홀로세 초기 리오 베르메호 층(포르모사 주)에서 보고되었다.
  • 피라스 외 연구진(2018)[257]은 검치 고양이 하악골의 형태학적 다양성 진화와 검치 고양이 진화의 특이성 및 멸종률에 관한 연구를 발표했다.
  • Harano & Kutsuke(2018)[258]에 의해 화석 검치 고양이와 현존하는 구름무늬 표범으로 이어지는 펠리드 계통의 상위 개 길이의 진화에 관한 연구가 발표되었습니다.
  • 비슬로보코바(2018)가 몬테네그로 트리카 동굴에서 메간테레온 화이트이의 개 한 마리를 보고했는데, 이는 이 아프리카 종이 [259]발칸반도에 처음으로 침투한 것을 반영한다.
  • Smilodon fatalis의 거의 완전한 두개골은 플라이스토세 Sopas Formation(Uruguay)에서 Manzuetti et al.(2018)에 의해 설명될 것이며, 이는 남미 [260]동부 지역에서 최초로 알려진 Smilodon fatalis에 대한 기록을 나타낸다.
  • Smilodon fatalisHomotherium serum의 두개골 강성과 유연성에 대한 연구 및 이러한 고양이의 살처분 행동을 추론하는 의미에 대한 연구는 Figueirido et al.(2018)[261]에 의해 발표되었다.
이름. 참신성 상황 작가들 나이 구성 단위 위치 메모들 이미지들

아로데스무스데메레이[262]

11월 1일

유효한

보세네커 & 처칠

마이오세(토르토니아)

몬테사노 형성

미국
(워싱턴)

우라이포렌시스[263]

11월 1일

유효한

토노모리

중기 마이오세

오코페자와층

일본.

오로라포카속[264]

제너레이션 등 sp. nov.

유효한

드와엘

플리오센(잔클린)

요크타운 포메이션

미국
(노스캐롤라이나)

모나키아과에 속하는 귀 없는 바다표범.모식종은 A. atlantica이다.

개똥지빠귀[265]

서브스펙 11월

유효한

앤젤리시 & 로시

홀로세

이탈리아

늑대의 아종.

사향쥐뇌[266]

11월 1일

유효한

포벨

플리오센-플라이스토세 전이

크롬드라이 화석 유적지

남아프리카 공화국

아프리카 사향고양이의 친척.

히드릭티스프라갈릭토이데스[267]

11월 1일

유효한

루크

갱신세

이탈리아

갈릭티니아과갈릭티니족에 속하는 무스텔과.

프리시포카[268]

일반 빗새출발

유효한

드와일, 람베르 & 루위

마이오세 후기

아마 디에스트 형성

벨기에

Phocinae 아과에 속하는 귀 없는 바다표범.모식종은 "Monotherium" oraratum Van Beneden(1876년)이다.속은 "Monotherium" 아핀 반 베네덴(1876년)도 포함한다.

굴로수도루스[269]

11월 1일

유효한

사무엘스, 브레드호프트 & 월리스

얼리 플리오센(최고령 블랑칸)

회색 화석지

미국
(테네시)

울버린의 친척입니다.

카티펠리스[270]

제너레이션 등 sp. nov.

유효한

Adrian, Werdelin & Grossman

마이오세 초기

로티독 포메이션

케냐

멧돼지과의 일원입니다.모식종은 K. 나이팅게일입니다.

키체키아 새비지[270]

11월 1일

유효한

Adrian, Werdelin & Grossman

마이오세 초기

로티독 포메이션

케냐

Paradoxurinae 아과에 속하는 비버리다과.

마르텔릭티스[271]

일반 빗새출발

유효한

바르톨리니 루센티

갱신세

오스트리아
프랑스.
이탈리아
네덜란드
슬로바키아

머스텔리과의 일원입니다.속은 "Mustela" ardea Gervais (1848–1852)를 포함한다.

멜레스 마그누스[272]

11월 1일

유효한

장쩌오

갱신세 초기

중국

멜레스일종인 오소리.

나노도베누스속[273]

제너레이션 등 sp. nov.

유효한

벨레스후아르베&살리나스마르케스

마이오세

토르투가스층

멕시코

바다코끼리의 친척.모식종은 N. arandai입니다.

나스아 마스토돈타[274]

11월 1일

유효한

에머트 및 쇼트

블랑칸

미국
(플로리다)

나수아의 한 종입니다.

노리포카[268]

일반 빗새출발

유효한

드와일, 람베르 & 루위

올리고세 말기 또는 마이오세 초

아마도 볼로나노층

이탈리아

모나키아과에 속하는 귀 없는 바다표범.모식종은 "모노테리움" 가우디니이다.

쯔바시카미[267]

11월 1일

유효한

루크

갱신세

이탈리아

갈릭티니아과갈릭티니족에 속하는 무스텔과.

판데라바라모이데스[275]

11월 1일

유효한

Stinnesbeck

갱신세

멕시코

판데라의 한 종입니다.2018년 발표, 2020년 기사명 최종판 게재.

프로시온집소니[274]

11월 1일

유효한

에머트 및 쇼트

블랑칸

미국
(플로리다)

프로시온의 일종입니다.

프로시온메가알로콜로스[274]

11월 1일

유효한

에머트 및 쇼트

블랑칸

미국
(플로리다)

프로시온의 일종입니다.

차다일루루스[276]

제너레이션 등 sp. nov.

유효한

드 보니

마이오세 후기

차드

마카이로돈티아과에 속하는 마카이로돈티아과의 일원이다.모식종은 T.adei이다.

티타노타리아속[277]

제너레이션 등 sp. nov.

유효한

마갈란

마이오세 후기

카피스트라노 포메뉴

미국
(캘리포니아)

바다코끼리의 친척.모식종은 T. orangeensis이다.

버진리아포카속[264]

제너레이션 등 sp. nov.

유효한

드와엘

마이오세 말기 또는 플리오센(잔클린)

Eastover Formation 또는 Yorktown Formation

미국
(버지니아)

모나키아과에 속하는 귀 없는 바다표범.모식종은 V. maguria입니다.

설치류

  • 이베로시타니아 지역(이베리아 반도 및 프랑스 남부)의 마이오세 말기 설치류에 대한 연구는 설치류 메타군을 식별하고 환경 변화에 대한 반응을 분석하는 것을 목적으로 한다. Blanco et al. (2018)[278]
  • 히스파니올라에서 멸종된 고유 설치류의 생태와 식생활 선호도에 대한 연구는 쿡앤크롤리(2018)[279]에 의해 발표되었습니다.
  • 탐콰미스운동 적응과 라이프스타일의 재구성을 목적으로 중국 에오세시대 탐콰미스속 탐콰미스속 2종의 견골골 형태에 관한 연구는 포스토위츠-프렐릭, 리앤니([280]2018)에 의해 발표되었다.
  • Rinderknecht, Bostelmann 및 Ubilla(2018)[281]에 의해 Miosene Camacho Formation(우루과이)에서 Dinomyd laurillardi의 새로운 성인 및 청소년 표본이 기술되었다.
  • 완모식표본과 새로운 표본의 데이터를 기반으로 한 테트라실루스 발테리의 해부학적 및 계통발생적 관계에 대한 연구는 Kerber et al.(2018)에 의해 온라인으로 발표되었으며, 이들은 이 분류군을 유효한 [282]종으로 간주한다.
  • 중앙아르헨티나 마이오세 말기의 잘 보존된 표본에 기초한 Cardiomys의 두개골 후두개(post cranium)에 대한 첫 번째 설명과 이 분류군의 고생물학과 계통학에 대한 연구는 칸델라, 무뇨즈, 가르시아-에스폰다(2018)[283]에 의해 발표되었다.
  • 지금까지 [284]보고된 멸종된 남미 카보모형의 가장 최근의 기록인 Verzi et al.(2018년)에 의해 홀세네 삼바키 드 푸에르토 란다 유적지(아르헨티나 엔트레 리오스 )에서 에우리요마토미인 에키미드 디콜포소르하악골 조각이 기술되었다.
  • 그 산 펠리페:베네수엘라 동북부 hutia(Mesocapromys sanfelipensis)의 최초로 알려진 화석(거의 완전한 두개골)Cueva 델 Indio(Mayabeque도, 쿠바)내에 Viñola의 로페즈 가리도 및에 의해 동굴 방에서;설명되어 있는 과거의 이 종의 현대 인구가 한계 유물의 표시로 그들의 발견을 해석하 Bermúdez(2018년),. dist제4기 중의 늑골.[285]
  • 엔트레리오스주(아르헨티나) 마이오세 말기 포베로미스속 구성원의 화석 개정과 이들의 계통학 및 계통학적 관계에 대한 연구가 Rasia & Candela(2018)[286]에 의해 발표되었다.
  • 코엔두 마그누스 종에 속하거나 관련된 신세계 고슴도치 화석은 Vezosi & Kerber(2018)[287]에 의해 산타페 주(아르헨티나)의 상부 플라이스토세부터 기술되었다.
  • 문제가 된 신진스키우루스속 시노타미아스의 개정판은 시니차(2018)[288]에 의해 출판되었다.
  • Miosene Clarkia 화석층(미국 아이다호주 Latah Formation)에서 Calede 외 연구진(2018)이 다람쥐과 동물 한 마리가 보고되었으며, 이는 이 라거스테테에서 [289]보고된 최초의 네발동물이다.
  • Miopetaurista neogrivensis의 11.63 만년 정도 나이와 함께 화석은 Casanovas-Vilar(알.(2018년)에 의해 Abocador 들 수 있마타 사이트 ACM/C5-D1(엘스 Hostalets 드 Pierola, 스페인 카탈로니아), 표시는gliding-related 진단 기능을 현존하는 형식에 의해 공유된 날다람쥐의 가장 오래된 화석을 대표하는 경기에서 기술되어 있다.[290]
  • 현존하는 마운틴 비버의 첫 번째 가상 내생동물과 아플로돈티아과의 세 가지 화석 구성원은 Bertrand et al.(2018)[291]에 의해 기술되었다.
  • Nowakowski et al. (2018)[292]아노말로미스 갈라르디 플리오스팔락스속에 속하는 우크라이나 현존 및 화석 스팔락스의 어금니에나멜 초미세구조에 관한 연구를 발표했다.
  • 아르헨티나와 볼리비아플라이스토세(Pleistose)에서 발견된 Nectomys속 추정화석 수정본은 Pardinas & Barbiér(2018)[293]에 의해 발표되었다.
  • 칠레 남부의 플레이스토세 빙하기 동안 아브로트릭스 마니의 인구통계학적 역사에 대한 연구는 발데즈 & 데리아(2018)[294]에 의해 발표되었다.
  • 몬쿠닐솔레, 조르다나, 쾰러(2018년)[295]는 이탈리아 마이오세 설치류 미크로티아의 체질량과 진화에 관한 연구를 발표했다.
  • 화석 기록의 철저한 검토를 바탕으로 9가지 강력한 화석 제약을 구현한 쥐류 설치류의 계통발생 관계에 대한 연구는 아고바 외 연구진(2018)[296]에 의해 발표되었다.
이름. 참신성 상황 작가들 나이 구성 단위 위치 메모들 이미지들

아에피오크리세투스[297]

제너레이션 등 sp. nov.

유효한

플리오센

잔다 분지

중국

햄스터.이 속은 새로운 종인 A. liuae를 포함한다.

아로스민투스고비엔시스[298]

11월 1일

유효한

고생대

중국

디포디과의 일원입니다.

알로미스[299]

제너레이션 등 sp. nov.

유효한

루이스

홀로세

인도네시아

쥐아과에 속하는 쥐과의 일원입니다.모식종은 A. aplini이다.

부스트라니아[300]

제너레이션 등 sp. nov.

유효한

드 브루인

에오세

세르비아

뽕나무아과에 속하는 뽕나무아목 뽕나무아목 뽕나무아목 뽕나무아목.모식종은 B. disimile이다.

칼링가스타인세[301]

11월 1일

유효한

세르데뇨

마이오세 후기

라스 플로레스 층

아르헨티나

카피바라의 친척입니다.2018년 발표, 2019년 기사명 최종판 게재.

콜라미[302]

제너레이션 등 sp. nov.

유효한

페레스

데세단

살라 침대

볼리비아

신세계 고슴도치.테트라로포돈타속은 새로운 을 포함한다.

더글라스시우루스오악사카엔시스[303]

11월 1일

유효한

Ferusquia-Villafranca

에오세

욜로메카틀 생성

멕시코

쥐과 동물입니다.

에오인카미스 파르부스[304]

11월 1일

유효한

보이빈

올리고세 초기

Pozo 형성

페루

친칠로아목의 일종으로 추정됩니다.

에오인카미스발베르데이[304]

11월 1일

유효한

보이빈

올리고세 초기

Pozo 형성

페루

친칠로아목의 일종으로 추정됩니다.

아오미야리온고데센시스[305]

11월 1일

유효한

Pelaez-Campomanes

마이오세 초기

터키

쥐과의 일원입니다.

유럽나노쥐속[306]

11월 1일

유효한

뫼르스와 토미

마이오세 초기

나카무라층

일본.

카스토리아과의 일원입니다.

그레고리미스 벨록시쿠아[307]

11월 1일

유효한

히메네스히달고, 게레로아레나스 & 스미스

에오세(카드로니아)

멕시코

Geomyidae의 일원입니다.

카리도미스 계층[308]

11월 1일

유효한

로페스-안토냥자스

마이오세

케라미아 형성

그리스

캐리도미스의 일종입니다.

키카스테이로미스속[304]

제너레이션 등 sp. nov.

유효한

보이빈

올리고세 초기

Pozo 형성

페루

에레시존토아목의 일원입니다.모식종은 K. raimondii이다.

크라글리비치미스[309]

일반 빗새출발

유효한

바르비에르, 오르티스 & 파르디냐스

플리오센

몬테 헤르모소 층

아르헨티나

지그모돈틴 설치류, 포모수스 레이그(1978)의 새로운 속.

라파즈미스속[302]

제너레이션 등 sp. nov.

유효한

페레스

데세단

살라 침대

볼리비아

옥토돈토상과와 관련된 카비오형 설치류.이 속은 새로운 종인 L. hartenbergeri

레가디나 어비니[310]

11월 1일

유효한

Cramb, Price & Hocknull

연령 불명, 갱신세 중후기일 가능성이 있음

호주.

레가디나의 일종입니다.

레가디나 웹비[310]

11월 1일

유효한

Cramb, Price & Hocknull

중기의 갱신세

호주.

레가디나의 일종입니다.

마유미스속[304]

제너레이션 등 sp. nov.

유효한

보이빈

올리고세 초기

포조 형성

페루

계통 발생학적 위치가 불분명한 옥토돈토아과의 일원입니다.모식종은 M. fuccurnens이다.

Microparamys solis[311]

파. nov

유효한

도슨&Constenius

중기 에오세

Kishenehn 형성

미국
(몬타나 주)

Migraveramus lavocati[302]

파. nov

유효한

페레스

Deseadan

Salla 대지

볼리비아

옥토돈토상과와 관련된 카비오형 설치류.

모길리아[312]

제2세대 외 11월

유효한

웨슬스

에오세 및 올리고세 초기

세르비아

Melissiodontinae아과에 속하는 Muridae과.모식종은 M. milosi이고, 속은 M. lautus도 포함한다.

나마파라미스[313]

제너레이션 등 sp. nov.

유효한

마인 & 픽포드

에오세(Ypresian/Lutetian)

검은 까마귀 석회암

나미비아

아마도 Reithroparamys의 친척일 것이다.모식종은 N. inspectatus이다.

난노크리세투스키이[297]

11월 1일

유효한

플리오센

잔다 분지

중국

햄스터.

네오비아팜페아나[314]

11월 1일

유효한

마도조-야엔

화이커리아어

세로 아줄층

아르헨티나

Caviinae의 일원입니다.

오크미스[315]

제너레이션 등 sp. nov.

유효한

마틴

갱신세 초기

스페인

알비콜라과의 일원입니다.속은 새로운 종인 O. giberti를 포함한다.

파라크리세토돈그라실리스[316]

11월 1일

유효한

Van de Weerd

올리고세 초기

세르비아

Paracricetodontinae아과에 속하는 Muridae과.

파라크리세토돈스토야노비치[316]

11월 1일

유효한

Van de Weerd

에오세 후기와 올리고세

세르비아

Paracricetodontinae아과에 속하는 Muridae과.

후악시아엔시스속[317]

11월 1일

유효한

마이오세 후기

린샤 분지

중국

타키요릭토이드아과파라히조미니족에 속하는 스팔라과.

긴꼬리쥐[317]

11월 1일

유효한

마이오세 후기

린샤 분지

중국

타키요릭토이드아과파라히조미니족에 속하는 스팔라과.

유러피우스[318]

11월 1일

유효한

반 콜프쇼텐, 테사코프 & 벨

플라이스토세 초기(겔라시아)

네덜란드

유럽산 들쥐속 최초의 알려진 들쥐.

파테르소니프로토스테이로미스[302]

11월 1일

유효한

페레스

데세단

살라 침대

볼리비아

신세계 고슴도치.

원생동물[303]

제너레이션 등 sp. nov.

유효한

Ferusquia-Villafranca

중기 에오세 후기

욜로메카틀 생성

멕시코

제타미스의 친척으로, 새로운 제타미과에 할당되어 있으며, 카비오모르파(Caviomorpha)의 일원일 가능성이 있습니다.이 속은 새로운 종인 P. mixtecus를 포함한다.

쥐꼬리쥐속[317]

제4세대 외 11월

유효한

마이오세 후기

린샤 분지

중국

타키요릭토이드아과파라히조미니족에 속하는 스팔라과.이 속은 새로운 종인 P. Indigenus, P. gansuensis, P. planusP. pristinus를 포함한다.

살라미스우디[302]

11월 1일

유효한

페레스

데세단

살라 침대

볼리비아

옥토돈토상과와 관련된 카비오형 설치류.

셀바미스[304]

제너레이션 등 sp. nov.

유효한

보이빈

올리고세 초기

Pozo 형성

페루

계통 발생학적 위치가 불분명한 옥토돈토아과의 일원입니다.모식종은 S. paulus이다.

샤파자미스[304]

제너레이션 등 sp. nov.

유효한

보이빈

올리고세 초기

Pozo 형성

페루

에레시존토아목의 일원입니다.모식종은 라보센시스입니다.

시므플로미스후기[319]

11월 1일

유효한

프리토

마이오세

스위스

겨울잠쥐.

타라포토미스속[304]

제2세대 외 11월

유효한

보이빈

올리고세 초기

Pozo 형성

페루

계통 발생학적 위치가 불분명한 Caviomorpha의 구성원.모식종은 T. subandinus이다.속은 T. mayoensis도 포함한다.

차크해비스[320]

제너레이션 등 sp. nov.

유효한

픽포드

에오세(Ypresian/Lutetian)

검은 까마귀 석회암

나미비아

Zegdoumyidae과의 일원입니다.모식종은 T. calcareus이다.

투파미스[321]

제너레이션 등 sp. nov.

유효한

픽포드

에오세(바르톤어, 아마도 프리아본어)

에오클리프 석회암

나미비아

새로운 멧돼지과에 속하는 히스트리코그나티의 일원입니다.모식종은 T. woodi이다.

바세우로스텍투스[322]

11월 1일

유효한

시니차&네신

마이오세 후기

우크라이나

Leithiinae아과에 속하는 겨울잠쥐.

비테니아 유럽화[300]

11월 1일

유효한

드 브루인

에오세

세르비아

뽕나무아과에 속하는 뽕나무아목 뽕나무아목 뽕나무아목 뽕나무아목.

영장류

  • Rossie et al.(2018)[323]에 의해 현존 및 고생대 스트렙시린과 하플로린에서 비루관형태학 및 고생대 영장류의 계통발생적 관계를 추론하는 의미에 관한 연구가 발표되었다.
  • 프로포토 리케이의 해부학적 및 계통발생적 관계에 대한 연구Gunnell et al.(2018)에 의해 발표되었으며, Gunnell et al.(2018)는 프로포토 리케이와 플레시오피테쿠스 모두에이에이[324]친척으로 간주했다.
  • 마다가스카르산 아화석 여우원숭이의 턱 근육과 물어뜯는 힘, 그리고 이들 여우원숭이의 식단을 추론하는 의미에 대한 연구는 페리(2018)[325]에 의해 발표되었다.
  • A study on the early evolution of North American adapids and omomyids, comparing reconstructed dietary niches of these primates and other animals from their guild to establish the nature of the competitive environment surrounding primate origins in North America, is published by Stroik & Schwartz (2018).[326]
  • Description of isolated phalanges from four early Eocene localities in Wyoming (United States), indicative of presence of grooming claws in five genera of early haplorhine primates (including Teilhardina), is published by Boyer et al. (2018).[327]
  • A study evaluating whether the locomotor behaviour of extant New World monkeys can be inferred from their talus morphology, and applying machine learning algorithms trained using both the biomechanical and morphometric data from the extant taxa to infer the possible locomotor behaviour of Miocene New World monkeys from Argentina, Chile, Peru, Colombia and Cuba, is published by Püschel et al. (2018).[328]
  • Partial mandible of Homunculus patagonicus from the early Miocene sediments in the Coyle river area (Santa Cruz Province, Argentina), providing new information on the morphology of the mandible and teeth of Homunculus, and two teeth of Mazzonicebus almendrae from Colhue-Huapi (Chubut Province, Argentina), providing the first evidence of the deciduous dentition of Mazzonicebus, are described by Novo, Tejedor & González Ruiz (2018).[329]
  • A study on the phylogenetic relationship of the Jamaican monkey (Xenothrix mcgregori), as indicated by ancient DNA data, is published by Woods et al. (2018).[330]
  • A tibia of a large-bodied arboreally adapted Old World monkey (a member or a relative of the genus Rhinocolobus) is described from the Australopithecus afarensis-bearing Upper Laetolil Beds (~3.7 Ma) of Laetoli (Tanzania) by Laird et al. (2018), who also study the implications of the specimen for inferring the paleoenvironment of the Upper Laetolil Beds.[331]
  • A skull of a large papionin monkey is described from the Lower Pleistocene site of Dafnero-3 (Greece) by Kostopoulos et al. (2018), who interpret the anatomy of this skull as indicating that the specimen could equally be ascribed to either the Eurasian genus Paradolichopithecus or to the East Asian Procynocephalus, and argue in favor of the synonymy of these genera.[332]
  • A study on the phylogenetic relationships of living and fossil African papionins is published by Pugh & Gilbert (2018).[333]
  • A study on the fossil members of the genus Papio from across Africa, focusing on their distinguishing features and distribution, is published by Gilbert et al. (2018).[334]
  • A study on the feeding ecology of Plio-Pleistocene members of the genera Papio and Theropithecus from the Shungura Formation (Ethiopia) is published by Martin et al. (2018).[335]
  • Three specimens of the Barbary macaque are described from the Pleistocene of the Netherlands by Reumer, Mol & Kahlke (2018).[336]
  • A study evaluating whether climatic and environmental changes were the main cause of extinction of Oreopithecus bambolii is published by DeMiguel & Rook (2018).[337]
  • A study on the body mass sexual dimorphism in Nacholapithecus kerioi is published by Kikuchi et al. (2018).[338]
  • Description of the anatomy of the forelimb long bones of the holotype specimen of Nacholapithecus kerioi is published by Takano et al. (2018).[339]
  • Fragment of the maxilla of a member of the genus Sivapithecus is described from the Miocene of the Tapar locality (Gujarat, India) by Bhandari et al. (2018), representing the first record of a hominoid from the Neogene of the Kutch Basin.[340]
  • A review of the paleontological, archeological, genetic and behavioral evidence of the impact of at least 70,000 years of human influence on orangutan distribution, abundance and ecology is published by Spehar et al. (2018).[341]
  • Description of tooth decay affecting the type specimen of Dryopithecus carinthiacus, and a study on its implications for inferring the diet of this specimen, is published by Fuss, Uhlig & Böhme (2018).[342]
  • A study on the phylogenetic relationships of Graecopithecus published by Benoit & Thackeray (2017), aiming to refute the hypothesis that Graecopithecus is a member of the hominin clade,[343] is criticized by Fuss et al. (2018).[344]
  • A study evaluating whether machine learning methods can accurately classify extant apes based on dental data, and using this classification method to explore the affinities between dentitions of Miocene hominoid fossils and living apes, is published by Monson, Armitage & Hlusko (2018).[345]
  • A study on the utility of enamel thickness, enamel-dentine junction shape and crown development for determining the taxonomic affiliation of isolated teeth of hominins and pongines from the Asian Pleistocene is published by Smith et al. (2018).[346]

General paleoanthropology

  • Estimations of body mass in Pliocene and Pleistocene hominins based on lower limb bones dimensions are presented by Ruff et al. (2018).[347]
  • A study on the evolution of the brain size in hominins is published by Du et al. (2018).[348]
  • A study on the evolution of the mandible shape in hominins, based on an analysis of the mandibular shape variation in a large sample of plesiadapiforms and primates, is published by Raia et al. (2018).[349]
  • A study on the cervical kinematics in early fossil hominins, based on an analysis of uncinate processes in the vertebrae of fossil hominins, Homo sapiens and extant nonhuman primates, is published by Meyer et al. (2018).[350]
  • A study on the intra-specific variation of patterns of metatarsal robusticity (a measure reflecting habitual stresses in long bones, and in particular, loads experienced over an animal's lifetime) in modern humans and extant African apes, and its implications for inferring whether the Olduvai Hominid 8 foot was biomechanically similar to the feet of modern humans, is published by Patel et al. (2018).[351]
  • A study on the bony shape variables in the metatarsals of extant anthropoid primates and fossil hominins, and on their importance to the evolution of terrestrial bipedalism in hominins, is published by Fernández et al. (2018).[352]
  • Domínguez-Rodrigo & Baquedano (2018) evaluate the ability of successful machine learning methods to compare and distinguish various types of bone surface modifications (trampling marks, crocodile bite marks and cut marks made with stone tools) in archaeofaunal assemblages.[353]
  • Taphonomic study on the ca. 1.84 million year old bovid fossils (preserving evidence of meat eating by early hominins) from Olduvai Gorge (Tanzania), evaluating whether hominins had early access to fleshed carcasses through hunting or active scavenging, or late access to largely defleshed carcasses through passive scavenging, is published by Parkinson (2018).[354]
  • The study published by Gierliński et al. (2017), reporting putative tetrapod footprints with hominin-like characteristics from the late Miocene of Crete (Greece),[355] is criticized by Meldrum & Sarmiento (2018).[356]
  • A study aiming to estimate body mass of Orrorin tugenensis and Ardipithecus ramidus is published by Grabowski, Hatala & Jungers (2018).[357]
  • A study comparing the calcar femorale of Orrorin tugenensis and other hominoids is published by Kuperavage et al. (2018), who interpret their findings as indicating that O. tugenensis was an early bipedal hominin.[358]
  • A study on the hydrological changes in the Limpopo River catchment and in sea surface temperature in the southwestern Indian Ocean for the past 2.14 million years, and on their implications for inferring the palaeoclimatic changes in southeastern Africa in this time period and their possible impact on the evolution of early hominins, is published by Caley et al. (2018).[359]
  • A study on the behavioral features which might have contributed to the demographic success of early hominids such as Australopithecus, based on comparison with macaques, is published by Meindl, Chaney & Lovejoy (2018).[360]
  • A study on the diversity dynamics of early hominins, evaluating whether the observed patterns of early hominin diversity can be better explained by sampling biases or genuine evolutionary processes, is published by Maxwell et al. (2018).[361]
  • A study on the pelvic morphology in Ardipithecus and Australopithecus, evaluating the hypothesis that early hominins retained ischial proportions and orientation that favored greater force production during climbing but limited their ability to hyperextend the hip and walk as economically as modern humans, is published by Kozma et al. (2018).[362]
  • Endocrania of two specimens of Australopithecus africanus from Sterkfontein Member 4 (South Africa) are virtually reconstructed by Beaudet et al. (2018).[363]
  • A study on the paleoenvironment and diet of Australopithecus africanus and Paranthropus robustus as indicated by tooth microwear is published by Peterson et al. (2018).[364]
  • A study on the relationship between root splay and overall morphology of first maxillary molars and jaw kinematics in South African Australopithecus africanus and Paranthropus robustus, and on its implications for inferring the dietary niches of these species, is published by Kupczik, Toro-Ibacache & Macho (2018).[365]
  • A study on the variation in trabecular bone structure of the femoral head in fossil hominins attributed to the species Australopithecus africanus, Paranthropus robustus and to the genus Homo, attempting to reconstruct hip joint loading conditions in these fossil hominins, is published by Ryan et al. (2018).[366]
  • A study on the habitats and diets of Paranthropus boisei and Homo rudolfensis from the Early Pleistocene of the Malawi Rift is published by Lüdecke et al. (2018).[367]
  • A study on the strontium isotope data derived from three studies of teeth of Paranthropus robustus, and on its implications for inferring habitat, mobility and growth of this species, is published by Sillen & Balter (2018).[368]
  • The skull of 'Mrs. Ples' (Sts 5 specimen of Australopithecus africanus) is interpreted as a skull of a small male rather than a large female individual by Tawane & Thackeray (2018).[369]
  • A study on the variation in the structure of trabecular bone and joint loading in the humeral head of extant hominoids, spider monkeys and Australopithecus africanus is published by Kivell et al. (2018), who interpret their findings as indicating that A. africanus may have still used its forelimbs for arboreal locomotion.[370]
  • Description of a nearly complete, 3.32-million-year-old foot of a juvenile Australopithecus afarensis from Dikika (Ethiopia) is published by DeSilva et al. (2018).[371]
  • A study on the possible date of the first appearance of Australopithecus sediba as indicated by the average hominin species' temporal range is published by Robinson et al. (2018).[372]
  • Studies on the anatomy of the skeleton of Australopithecus sediba are published by De Ruiter et al. (2018),[373] Williams et al. (2018),[374] Churchill et al. (2018),[375] Kivell et al. (2018),[376] Churchill et al. (2018),[377] DeSilva et al. (2018)[378] and Holliday et al. (2018).[379]
  • A digital animation of the proposed walking mechanics of Australopithecus sediba is presented by Zhang & DeSilva (2018).[380]
  • A study on the linear marks observed on the hominin fossil Stw53 from the Sterkfontein cave site (South Africa), evaluating whether these marks were cutmarks inflicted by stone tools or non-anthropic modifications, is published by Hanon, Péan & Prat (2018).[381]
  • New artifacts are described from the Swartkrans cave (South Africa) by Kuman et al. (2018), who confirm the affinity of the Swartkrans artifacts with the Oldowan industrial complex.[382]
  • Oldowan stone tools and associated hominin-modified fossil bones are reported from strata estimated to ≈2.4 and ≈1.9 Ma from two deposits at Ain Boucherit (Algeria) by Sahnouni et al. (2018).[383]
  • Pelvic remains of Homo naledi from the Dinaledi Chamber in the Rising Star Cave system (Cradle of Humankind, South Africa) are described by VanSickle et al. (2018).[384]
  • A study on the minimum number of individuals and on a demographic profile of the assemblage of Homo naledi individuals in the Dinaledi Chamber (Rising Star Cave system, South Africa) is published by Bolter et al. (2018).[385]
  • A study on the diet of Homo naledi as indicated by teeth wear textures is published by Ungar & Berger (2018).[386]
  • A study comparing tooth shape and size in Homo naledi and other South African Plio-Pleistocene hominins, as well as a study on the possible diet of Homo naledi, is published by Berthaume, Delezene & Kupczik (2018).[387]
  • A study on the endocast morphology of Homo naledi, comparing it with other hominoids and fossil hominins, is published by Holloway et al. (2018).[388]
  • A study on the phenetic affinities and taxonomic validity of Homo naledi as indicated by teeth morphology will be published by Irish et al. (2018).[389]
  • Three incudes of Homo naledi recovered from the Dinaledi Chamber in the Rising Star cave system are described by Elliott et al. (2018).[390]
  • Partial mandible of Homo naledi which was most likely affected by peripheral osteoma is reported by Odes et al. (2018).[391]
  • A study on evaluating whether deliberate disposal of corpses is the only likely explanation for large assemblages of fossil human bones from the Middle Pleistocene sites of Sima de los Huesos (Spain) and the Dinaledi Chamber (South Africa) is published by Egeland et al. (2018).[392]
  • A study on the phylogenetic relationships of the Pleistocene hominin specimen (a fragmented skullcap) from Kocabaş (Denizli Basin, Turkey) is published by Vialet et al. (2018).[393]
  • A study on the morphology and affinities of the hominin calvaria KNM-ER 42700 from Ileret, Kenya is published by Neubauer et al. (2018).[394]
  • A study on the frequency and location of hominin (likely Homo habilis) butchery marks and carnivore tooth marks on mammal bones from the HWK EE site (Olduvai Gorge, Tanzania), and on their implications for inferring carnivorous feeding behavior of the HWK EE hominins and the ecological interactions they had with carnivores, is published by Pante et al. (2018).[395]
  • A study estimating possible adult stature and body mass of the Homo erectus specimen KNM-WT 15000 ("Turkana Boy") is published by Cunningham et al. (2018).[396]
  • A study on the structure of the animal community known from the Okote Member of the Koobi Fora Formation at East Turkana (Kenya) as indicated by tracks and skeletal assemblages, and on the interactions of Homo erectus with environment and associated faunas from this site, is published by Roach et al. (2018).[397]
  • A study on the large cutting tools from four Acheulean sites at Koobi Fora dated to ~1.4 million years ago, investigating the behavioural patterns underpinning recorded artefact variability, is published by Presnyakova et al. (2018).[398]
  • A study on 1.07–0.99 million-year-old pelvic remains from Buia (Eritrea) is published by Hammond et al. (2018), who interpret their findings as indicating that the postcranial morphology of Homo erectus sensu lato was variable and, in some cases, nearly indistinguishable from modern human morphology, and that the shared last common ancestor of Late Pleistocene Homo species was unlikely to have an australopith-like pelvis.[399]
  • A study on the humeral rigidity and strength in members of the species Homo erectus known from Zhoukoudian (China), comparing it with the humeral rigidity and strength in the African members of the species, is published by Xing et al. (2018).[400]
  • A study on the morphology of teeth of Homo erectus from Zhoukoudian is published by Xing, Martinón-Torres & Bermúdez de Castro (2018).[401]
  • A study on the age of the archaeological layers from the Zhoukoudian Upper Cave, and on its implications for understanding Late Quaternary human evolution in eastern Asia, is published by Li et al. (2018).[402]
  • New magnetostratigraphic dating results for the Bailong Cave (China) sedimentary sequence containing hominin teeth assigned to the species Homo erectus are presented by Kong et al. (2018).[403]
  • An Early Pleistocene artefact sequence, containing 17 artefact layers that extend from approximately 1.26 million years ago to about 2.12 million years ago, is described from the Shangchen locality (Loess Plateau, China) by Zhu et al. (2018), indicating that hominins left Africa earlier than indicated by the evidence from Dmanisi.[404]
  • A study investigating how the hominin groups living in the Qinling Mountains range (China) responded to glacial–interglacial shifts from ~1.20 million years ago to ~0.05 million years ago is published by Sun et al. (2018).[405]
  • A study on the morphology and affinities of the Middle Pleistocene hominin mandible recovered from La Niche cave site of the Montmaurin karst system (France) is published by Vialet et al. (2018).[406]
  • Taphonomic signatures of the Aroeira 3 cranium, with a specific focus on cranial breakage, are described by Sanz et al. (2018), who attempt to approximate the cause of death of this individual.[407]
  • A study on strategies for thermoregulation in the absence of fire in conditions experienced by hominins in north-west Europe before 400,000 years ago is published by MacDonald (2018).[408]
  • Evidence for progressive aridification in East Africa since about 575,000 years before present, based on data from sediments from Lake Magadi (Kenya), is presented by Owen et al. (2018), who also evaluate the influence of the increasing Middle- to Late-Pleistocene aridification and environmental variability on the physical and cultural evolution of Homo sapiens in East Africa.[409]
  • A series of excavated Middle Stone Age sites from the Olorgesailie Basin (Kenya), dated as ≈320,000 years old, is presented by Brooks et al. (2018), who report evidence of hominins preparing cores and points, exploiting iron-rich rocks to obtain red pigment, and procuring stone tool materials from ≥25–50 km distance.[410]
  • A study on the environmental dynamics before and after the onset of the early Middle Stone Age in the Olorgesailie Basin (Kenya) is published by Potts et al. (2018).[411]
  • A study on the chronology of the Acheulean and early Middle Stone Age sedimentary deposits in the Olorgesailie Basin (Kenya) is published by Deino et al. (2018).[412]
  • A study on bone artefacts from Middle Stone Age layers at Sibudu Cave (South Africa), evaluating what kinds of animals were used to make bone tools, is published by Bradfield (2018).[413]
  • A study on the stone tools from the Acheulean site of Saffaqah near Dawadmi (Saudi Arabia), and their implications for inferring how hominins adapted to this region, is published by Shipton et al. (2018).[414]
  • A study on the stratigraphy, archaeology and chronology of the Saffaqah site, providing the first secure dates for this site, is published by Scerri et al. (2018).[415]
  • A study on the age of stone tools from the Attirampakkam site in India is published by Akhilesh et al. (2018), indicating the emergence of a Middle Paleolithic culture in India at 385 ± 64 thousand years ago.[416]
  • Stone tools associated with a skeleton of Rhinoceros philippinensis showing clear signs of butchery are described from a bone bed at Kalinga in the Cagayan Valley of northern Luzon (the Philippines), dated to between 777 and 631 thousand years ago, by Ingicco et al. (2018).[417]
  • The study on the Cerutti Mastodon site published by Holen et al. (2017), reporting possible evidence of an unidentified species of the genus Homo living in California 130,000 years ago,[418] is criticized by Ferraro et al. (2018).[419][420]
  • Bone retouchers dated as approximately 125–105,000 years old are described from the Lingjing site in Henan, China by Doyon et al. (2018), representing the first evidence from Eastern Asia for the use of bone as raw material to modify stone tools.[421]
  • A 90,000-years-old specialized bone tool discovered in association with the Aterian techno-complex is described from the cave site of Dar es-Soltan 1 (Morocco) by Bouzouggar et al. (2018).[422]
  • A study on the antiquity of the remains of Homo antecessor, based on the first direct Electron Spin Resonance dating of a tooth from the TD6 unit of Atapuerca Gran Dolina site (Spain), is published by Duval et al. (2018).[423]
  • A study aiming to test the hypothesis if Homo antecessor molars approximated the Neanderthal rather than the Homo sapiens condition for tissue proportions and enamel thickness is published by Martín-Francés et al. (2018).[424]
  • An assemblage of hominin tracks produced by adults and children potentially as young as 12 months, probably members of the species Homo heidelbergensis living 700,000 years ago, is described from the Upper Awash Valley (Ethiopia) by Altamura et al. (2018).[425]
  • A study on the morphology and function of the browridge of the Kabwe 1 archaic hominin specimen is published by Godinho, Spikins & O'Higgins (2018).[426]
  • A study intending to detect introgressed Denisovan genetic material in present-day human genomes is published by Browning et al. (2018), who report evidence of Denisovan ancestry in populations from East and South Asia and Papuans, and interpret their findings as indicating that at least two distinct instances of Denisovan admixture into modern humans occurred.[427]
  • Genome recovered from a bone fragment from the Denisova Cave (Russia) is presented by Slon et al. (2018), who interpret the studied individual as the offspring of a Neanderthal mother and a Denisovan father.[428]
  • A study on the absolute bone volume in five human long bones from the Sima de los Huesos site is published by Carretero et al. (2018), who interpret their findings as indicating that Sima de los Huesos hominins had on average heavier long bones than extant humans of the same size.[429]
  • A study on the stone tools from the site of la Noira (France) and their implications for reconstructing early Acheulean hominin behavior is published by Hardy et al. (2018), who argue that the hominins from this site used a broad range of resources including wood, plants, mammals, and possibly birds and fish, and that Middle Pleistocene hominins had detailed local environmental knowledge and were able to adapt to a wide range of environments.[430]
  • A study aiming to estimate total lung capacity of Neanderthals, as well as Early Pleistocene hominins from the Gran Dolina site ATD6 (Spain), is published by García-Martínez et al. (2018).[431]
  • A series of partially charred wooden tools is described from the late Middle Pleistocene site of Poggetti Vecchi (central Italy) by Aranguren et al. (2018), who interpret their findings as indicating that Neanderthals were able to choose the appropriate timber and to process it with fire to produce tools.[432]
  • A wooden tool (possibly a digging stick), likely produced by Neanderthals, is described from the early Late Pleistocene Aranbaltza III site (Basque Country, Spain) by Rios-Garaizar et al. (2018), representing the oldest wooden tool from southern Europe reported so far.[433]
  • Cave art in Cave of La Pasiega, Maltravieso cave and Ardales cave (Spain) is dated as older than 64,000 years (thus predating the arrival of modern humans in Europe) by Hoffmann et al. (2018), who interpret their findings as indicative of Neandertal authorship of the art;[434] the study is subsequently criticized by Pearce & Bonneau (2018),[435][436] Aubert, Brumm & Huntley (2018),[437][438] Slimak et al. (2018)[439][440] and White et al. (2020).[441][442]
  • A study on the age of the flowstone capping the Cueva de los Aviones deposit in southeast Spain is published by Hoffmann et al. (2018), who report that Neanderthal-associated evidence of symbolic behavior found at the site is 115,000 to 120,000 years old and predates the earliest known comparable evidence associated with modern humans by 20,000 to 40,000 years.[443]
  • Genomes of five Neanderthals from Belgium (Spy Cave and Goyet Caves), France (Les Cottés cave), Croatia (Vindija Cave) and Russia (Mezmaiskaya cave), who lived around 39,000 to 47,000 years ago, are sequenced by Hajdinjak et al. (2018).[444]
  • A study on Neanderthal skeletal remains and animal fossils from the Vindija Cave, and on their implications for inferring Neanderthal behaviour, is published by Patou-Mathis, Karavanić & Smith (2018).[445]
  • A study evaluating three hypotheses forwarded to explain the distinctive Neanderthal face is published by Wroe et al. (2018).[446]
  • A study evaluating ecological niche similarity between the datasets of morphologically diagnostic Neanderthal remains and of archaeological sites with Middle Paleolithic artifacts (but no diagnostic hominin remains), as well as assessing its implications for inferring whether those archaeological sites represent Neanderthal occurrences, is published by Bible & Peterson (2018).[447]
  • Gaudzinski-Windheuser et al. (2018) report perforations observed on two fallow deer skeletons from the 120,000-year-old lake shore deposits from Neumark-Nord (Germany), interpreted as evidence of close-range use of thrusting spears by Neanderthals.[448]
  • A study on the timing and duration of periods of climate deterioration in the interior of the Iberian Peninsula in the late Pleistocene, evaluating the impact of climate on the abandonment of inner Iberian territories by Neanderthals 42,000 years ago, is published by Wolf et al. (2018).[449]
  • A study on pollen recovered from hyaena coprolites from Vanguard Cave (Gibraltar), and on its implications for reconstructing the vegetation landscapes in the environment inhabited by southern Iberian Neanderthals during the MIS 3, is published by Carrión et al. (2018).[450]
  • Evidence of bird and carnivore exploitation by Neanderthals (cut-marks in golden eagle, raven, wolf and lynx remains) is reported from the Axlor site (Spain) by Gómez-Olivencia et al. (2018).[451]
  • The first direct artefactual evidence for regular, systematic fire production by Neanderthals is reported from archaeological layers attributed to late Mousterian industries at multiple sites throughout France by Sorensen, Claud & Soressi (2018).[452]
  • A study on Neanderthal manual activities is published by Karakostis et al. (2018), who report evidence of habitual performance of precision grasping by Neanderthals.[453]
  • 3D virtual reconstruction of the thorax of the Kebara 2 Neanderthal individual is presented by Gómez-Olivencia et al. (2018).[454]
  • A study aiming to determine whether metabolic differences between competing populations of Neanderthals and anatomically modern humans alone could have accounted for Neanderthal extinction, as well as investigating Neanderthal fire use, is published by Goldfield, Booton & Marston (2018).[455]
  • A study on the climate changes in Europe during the Middle–Upper Paleolithic transition (based on speleothem records from the Ascunsă Cave and from the Tăușoare Cave, Romania), and on their implications for the replacement of Neanderthals by modern humans in Europe, is published by Fernández et al. (2018).[456]
  • A study on the cultural attribution and stratigraphic integrity of the Neanderthal skeletal material from La Roche-à-Pierrot, Saint-Césaire (France), evaluating whether there is reliable evidence for a Neanderthal-Châtelperronian association at this site, is published by Gravina et al. (2018).[457]
  • A study aiming to reconstruct 3D brain shape of Neanderthals and early Homo sapiens is published by Kochiyama et al. (2018).[458]
  • A study on patterns of seasonal variation in the environment inhabited by Neanderthals, on Neanderthal life history and on their exposure to potential environmental hazards, as indicated by data from oxygen isotopes, trace element distributions and tooth development in two Neanderthals and one modern human from Payre (an archeological site in the Rhone Valley, France), is published by Smith et al. (2018).[459]
  • A study on the human teeth from the Middle Pleistocene sites of Fontana Ranuccio and Visogliano (Italy), aiming to identify the presence, if any, of a Neanderthal-like signature in the inner structure of these teeth, is published by Zanolli et al. (2018).[460]
  • Evidence indicating that interbreeding between Neanderthals and modern humans led to the exposure of each species to novel viruses and to the exchange of adaptive alleles that provided resistance against these viruses is presented by Enard & Petrov (2018).[461]
  • A study on Neanderthals and early Upper Paleolithic anatomically modern humans, reassessing the hypothesis of higher skull trauma prevalence among Neanderthals than among anatomically modern humans, is published by Beier et al. (2018).[462]
  • A study on the age of the Buran-Kaya III site in Crimea is published by Prat et al. (2018), who interpret their findings as casting doubt on the survival of Neanderthal refuge zones in Crimea 28,000 years before present, and indicating that the human remains from this site represent some of the oldest evidence of anatomically modern humans in Europe.[463]
  • A study on the use of plants by early modern humans during the Middle Stone Age as indicated by analyses of phytoliths from the Pinnacle Point locality (South Africa) is published by Esteban et al. (2018).[464]
  • A study on the climatic changes in the Lake Tana area in the last 150,000 years and their implications for early modern human dispersal out of Africa is published by Lamb et al. (2018).[465]
  • A review of fossil, archaeological, genetic, and paleoenvironmental data on the origin of Homo sapiens is published by Scerri et al. (2018), who argue that Homo sapiens evolved within a set of interlinked groups living across Africa, whose connectivity changed through time, rather than from a single region/population in Africa.[466]
  • A review of the archaeological and palaeoenvironmental datasets relating to the Middle–Late Pleistocene dispersal of Homo sapiens within and beyond Africa is published by Roberts & Stewart (2018), who argue that H. sapiens developed a new ecological niche.[467]
  • A study on the evolution of modern human brain shape based on endocasts of Homo sapiens fossils from different geologic time periods is published by Neubauer, Hublin & Gunz (2018).[468]
  • Late Pleistocene hominin tracks, probably produced by Homo sapiens, are described from the Waenhuiskrans Formation (South Africa) by Helm et al. (2018).[469]
  • A study on the proxy evidence for environmental changes during past 116,000 years in lake sediment cores from the Chew Bahir basin, south Ethiopia (close to the key hominin site of Omo Kibish), and on its implications for inferring the environmental context for dispersal of anatomically modern humans from northeastern Africa, is published by Viehberg et al. (2018).[470]
  • A study on the age of a modern human mandible with teeth from the Misliya cave (Mount Carmel, Israel) is published by Hershkovitz et al. (2018), who date the fossil as at least 177,000 years old, representing the oldest reported fossil of a member of the Homo sapiens clade found outside Africa.[471][472][473]
  • A phalanx of a member of the species Homo sapiens is described from the ≈95–86,000 years old Al Wusta site (An Nafud, Saudi Arabia) by Groucutt et al. (2018), representing the oldest directly dated fossil of Homo sapiens found outside Africa and the Levant.[474]
  • A study on the effects of the Toba supereruption in East Africa is published by Yost et al. (2018), who find no evidence of the eruption causing a volcanic winter in East Africa or a population bottleneck among African populations of anatomically modern humans.[475]
  • Microscopic glass shards characteristic of the Youngest Toba Tuff (ashfall from the Toba eruption), dated as approximately 74,000 years old, are described from two archaeological sites on the south coast of South Africa by Smith et al. (2018), who interpret their findings as indicating that humans in this region thrived through the Toba event and the ensuing full glacial conditions.[476]
  • Evidence of human activity dating back to 78,000 years ago is reported from the Panga ya Saidi cave (Kenya) by Shipton et al. (2018), who describe a rich technological sequence that includes lithic forms elsewhere associated with the Middle Stone Age and the Later Stone Age.[477]
  • A cross-hatched pattern drawn with an ochre crayon is reported from approximately 73,000-year-old Middle Stone Age levels at Blombos Cave (South Africa) by Henshilwood et al. (2018), pre-dating previously known abstract and figurative drawings by at least 30,000 years.[478]
  • A study on the age of the cave art from the Kapova Cave (Russia) is published by Dublyansky et al. (2018).[479]
  • New rock art site, linkable chronoculturally to the Early Upper Paleolithic, is identified in Las Ventanas Cave (Spain) by Cortés-Sánchez et al. (2018).[480]
  • Rock art, including a figurative painting of an animal dating to at least 40,000 years ago, is described from the Lubang Jeriji Saléh cave (East Kalimantan, Indonesia) by Aubert et al. (2018).[481]
  • A study on changes in ochre use throughout an entire Upper Paleolithic sequence at Hohle Fels cave (Germany) is published by Velliky, Porr & Conard (2018).[482]
  • A study on the timing and mechanisms of the initial colonization of the Nwya Devu Paleolithic site (Tibetan Plateau) by humans is published by Zhang et al. (2018).[483]
  • A study on the human use of rainforest plant resources of prehistoric Sri Lanka, as indicated by data from phytoliths from the Fahien Rock Shelter sediments, is published by Premathilake & Hunt (2018).[484]
  • A reassessment of the Late Pleistocene human occupation site at Leang Burung 2 (Sulawesi, Indonesia), presenting new stratigraphic information and dating evidence from the site, is published by Brumm et al. (2018).[485]
  • A study on the timing of arrival of anatomically modern humans to Southeast Asia and Sahul is published by O'Connell et al. (2018), who consider it unlikely that the artifacts from Madjedbebe (northern Australia) reported by Clarkson et al. (2017)[486] are more than 50,000 years old.[487]
  • A study investigating the most likely route used by early modern humans to colonize Sahul is published by Kealy, Louys & O'Connor (2018).[488]
  • A study on the results of re-excavation of Karnatukul (Serpent's Glen rockshelter in the Australian Little Sandy Desert), as well as on the chronology of this site, is published by McDonald et al. (2018).[489]
  • Genomic data from seven 15,000-year-old modern humans from Morocco, attributed to the Iberomaurusian culture, is presented by van de Loosdrecht et al. (2018), who report evidence of a genetic affinity of the studied individuals with early Holocene Near Easterners.[490]
  • A study on charred food remains from Shubayqa 1, a Natufian hunter-gatherer site located in northeastern Jordan and dated to 14.6–11.6 ka cal BP, is published by Arranz-Otaegui et al. (2018), who interpret their findings as providing the earliest empirical evidence for the preparation of bread-like products by Natufian hunter-gatherers, predating the emergence of agriculture by at least 4,000 years.[491]
  • A study on the timing of first human arrival in Madagascar, as indicated by evidence of prehistoric human modification of multiple elephant bird postcranial elements, is published by Hansford et al. (2018).[492]
  • A study on the timing of human colonization of Madagascar, as indicated by data from butchery marks on megafaunal bones, radiocarbon chronology of bone deposits and an analysis of the sedimentary record, is published by Anderson et al. (2018).[493]
  • Description of the morphology of three partial human mandibles from the Niah Caves (Sarawak, Malaysia) and a study on the age of these bones is published by Curnoe et al. (2018).[494]
  • A study investigating whether the human population occupying Beringia during the Last Glacial Maximum represented an example of human adaptation to an extreme environment, focusing on gene variations which might have conferred advantage in transmitting nutrients from mother to infant through breast milk under conditions of extremely low UV, is published by Hlusko et al. (2018).[495]
  • A review of the genetic, archeological and paleoecological data on the course of the settlement of the Americas is published by Potter et al. (2018), who argue that available evidence is consistent with an inland migration through an ice-free corridor or with a migration through Pacific coastal routes (or both), but neither can be rejected.[496]
  • A study on the timing of the latest Pleistocene glaciation in southeastern Alaska and its implication for inferring the route and timing of early human migration to the Americas is published by Lesnek et al. (2018).[497]
  • A study on the technological traits of fluted projectile points from northern Alaska and Yukon, in combination with artifacts from further south in Canada, the Great Plains, and eastern United States, evaluating the plausibility of historical relatedness and evolutionary patterns in the spread of fluted-point technology in North America in the latest Pleistocene and earliest Holocene, is published by Smith & Goebel (2018).[498]
  • Late Pleistocene human footprints left by a minimum of three people are described from the Calvert Island (British Columbia, Canada) by McLaren et al. (2018).[499]
  • Associated human and ground sloth tracks are described from the Rancholabrean deposits in the White Sands National Park (New Mexico, United States) by Bustos et al. (2018), who interpret their finding as evidence of humans actively stalking, harassing and likely hunting ground sloths in the late Pleistocene.[500]
  • A study on the age of a series of sedimentary samples from the earliest cultural assemblage at the Gault Site (Texas, United States), including a previously unknown, early projectile point technology unrelated to Clovis, is published by Williams et al. (2018).[501]
  • A robust lithic projectile point assemblage is reported from the layers dated between ≈13.5 and 15.5 ka ago at the Debra L. Friedkin site (Texas, United States) by Waters et al. (2018).[502]
  • A study on the age of the Anzick burial site (Montana, United States) is published by Becerra-Valdivia et al. (2018).[503]
  • The genome of two infants from the Upward Sun River site dated 11,500 years ago is sequenced, leading to the discovery of the Ancient Beringian ethnic group.[504][505]
  • Scheib et al. (2018) sequence 91 ancient human genomes from California and southwestern Ontario, demonstrating the existence of two distinct ancestries in North America, and finding contribution from both of these ancestral populations in all modern Central and South Americans.[506]
  • Posth et al. (2018) report genome-wide ancient DNA from 49 individuals from Central and South America, all dating to at least ~9,000 years ago, and interpret their finding as indicative of two previously undocumented genetic exchanges between North and South America.[507]
  • A study on the history of dispersal and diversification of people within the Americas, based on data from ancient human genomes spanning Alaska to Patagonia, is published by Moreno-Mayar et al. (2018).[508]
  • A study on the site context, geoarchaeology and material assemblages of the Valiente lithic workshop site (Chile) is published by Méndez et al. (2018).[509]
  • Evidence of plant domestication and food production from the early and middle Holocene site of Teotonio (southwestern Amazonia, Brazil) is presented by Watling et al. (2018).[510]
  • A study on the morphological affinity of the late Paleolithic human skull from the Zlatý kůň site in the Bohemian Karst (Czech Republic) is published by Rmoutilová et al. (2018), who also evaluate whether it is possible to determine the sex of the Zlatý kůň individual based on its skull morphology.[511]
  • A study on the Mesolithic site of Star Carr, indicating that there was intensive human activity at the site for several hundred years when the community was subject to multiple, severe, abrupt climate events that impacted air temperatures, the landscape and the ecosystem of the region, is published by Blockley et al. (2018).[512]
  • A study on the tools preserved with Ötzi, evaluating their implications for inferring Ötzi's individual history, the reconstruction of his last days and his cultural and social background, is published by Wierer et al. (2018).[513]
  • A study on the contents of Ötzi's stomach is published by Maixner et al. (2018).[514]
  • A study on the compositions of the faunal and stone artifact assemblages at Liang Bua (Flores, Indonesia), aiming to determine the last appearance dates of Stegodon, giant marabou stork, Old World vulture belonging to the genus Trigonoceps, and Komodo dragon at the Liang Bua site, and to determine what raw materials were preferred by hominins from this site ~50,000–13,000 years ago and whether these preferences were similar to those seen in the stone artifact assemblages attributed to Homo floresiensis or to those attributed to modern humans, is published by Sutikna et al. (2018).[515]
  • A study on genetic variation among a population of Rampasasa pygmies living close to the cave where remains of Homo floresiensis were discovered is published by Tucci et al. (2018), who find evidence of admixture with Denisovans and Neanderthals but no evidence for gene flow with other archaic hominins, and interpret their findings as indicating that at least two independent instances of hominin insular dwarfism occurred on Flores.[516]
  • A synthesis of patterns and incidences of developmental abnormalities and anomalies in the Pleistocene Homo fossil record is published by Trinkaus (2018).[517]

New taxa

Name Novelty Status Authors Age Unit Location Notes Images

Asiadapis tapiensis[518]

Sp. nov

Valid

Rose et al.

Eocene (early Ypresian)

Cambay Shale Formation

India

Brontomomys[519]

Gen. et sp. nov

Valid

Atwater & Kirk

Eocene (Uintan)

Friars Formation

United States
( California)

A member of the family Omomyidae. Genus includes new species B. cerutti.

Ekwiiyemakius[519]

Gen. et sp. nov

Valid

Atwater & Kirk

Eocene (Uintan)

Friars Formation

United States
( California)

A member of the family Omomyidae. Genus includes new species E. walshi.

Europolemur midiensis[174]

Sp. nov

Valid

Godinot in Godinot et al.

Eocene

France

Gunnelltarsius[519]

Gen. et sp. nov

Valid

Atwater & Kirk

Eocene (Uintan)

Friars Formation

United States
( California)

A member of the family Omomyidae. Genus includes new species G. randalli.

Junzi[520]

Gen. et sp. nov

Valid

Turvey et al.

Holocene

China

A gibbon. Genus includes new species J. imperialis.

Namadapis[521]

Gen. et sp. nov

Valid

Godinot, Senut & Pickford

Middle Eocene

Namibia

A member of the family Adapidae belonging to the subfamily Caenopithecinae. The type species is N. interdictus.

Rouzilemur[174]

Gen. et sp. nov

Valid

Godinot in Godinot et al.

Eocene

France

A member of the family Notharctidae. Genus includes new species R. pulcher.

Simiolus minutus[522][523]

Sp. nov

Valid

Rossie & Hill

Middle Miocene

Ngorora Formation

Kenya

Walshina[524]

Gen. et sp. et comb. nov

Valid

López-Torres, Silcox & Holroyd

Eocene (Uintan and Duchesnean)

Sespe Formation

United States
( California
Wyoming)

A member of the family Omomyidae. The type species is W. esmaraldensis; genus also includes W. mcgrewi (Robinson, 1968) and W. shifrae (Krishtalka, 1978).

Other eutherians

  • Putative Cretaceous metatherian Sinodelphys szalayi is reinterpreted as an early member of Eutheria by Bi et al. (2018).[525]
  • A study on the anatomy of the Early Cretaceous eutherian Endotherium niinomii is published by Wang et al. (2018), who consider this species to be a valid taxon.[526]
  • Napoli et al. (2018) digitally visualize and describe the endocast of a taeniodont Onychodectes tisonensis.[527]
  • A study evaluating when solenodons split from other eulipotyphlans, based on updated fossil calibrations, is published by Springer, Murphy & Roca (2018), who place the split between solenodons and other eulipotyphlans in the Late Cretaceous.[528]
  • Fragment of the mandible of the mole Mongoloscapter zhegalloi is described from the Late Oligocene Tsakhir-Ula locality (Mongolia) by Lopatin (2018), representing the second record of Mongoloscapter reported so far.[529]
  • A study comparing the size and morphology of the common shrew (Sorex araneus), Sorex runtonensis, the tundra shrew (S. tundrensis) and the Caucasian shrew (S. satununi) with the type material of the fossil shrew Sorex subaraneus (in order to either support or falsify the validity of S. subaraneus and the putative ancestry of the extant common shrew) is published by Rzebik-Kowalska & Pereswiet-Soltan (2018).[530]
  • A study on the phylogenetic relationships of the gymnure Deinogalerix within the tribe Galericini is published by Borrani et al. (2018).[531][532]
  • A study on the systematic usefulness of the humerus in proterotheriid litopterns is published by Corona, Perea & Ubilla (2018), who consider the species Proterotherium berroi Kraglievich (1930) to be a probable synonym of Neolicaphrium recens.[533]
  • A study on the diversity of shapes of snout in notoungulates and on the evolution of the wide range of shapes of snout in this group of mammals is published by Gomes Rodrigues et al. (2018).[534]
  • A study on the variation of teeth shape and on the factors affecting changes in the shape of teeth of notopithecid notoungulates is published by Scarano & Vera (2018).[535]
  • A study on the variation of teeth shape in late Miocene members of the hegetotheriid notoungulate genus Paedotherium, as well as its implications for the systematics and phylogenetic relationships of the late Miocene species of Paedotherium, is published by Ercoli et al. (2018).[536]
  • A study on the variability of the diagnostic characters in the fossils of members of the hegetotheriid notoungulate genus Tremacyllus is published by Sostillo, Cerdeño & Montalvo (2018), who consider the species T. incipiens to be a junior synonym of the species T. impressus.[537]
  • New fossil remains of pachyrukhine hegetotheriid notoungulates are described from the Huayquerías del Este (Mendoza, Argentina) by Vera & Ercoli (2018), who consider the species Tremacyllus subdiminutus to be a synonym of T. impressus.[538]
  • Fernández-Monescill et al. (2018) provide muscular reconstruction and infer functional properties of the forelimb of the mesotheriid notoungulate Plesiotypotherium achirense.[539]
  • A study on the tooth wear, tooth replacement and enamel microstructure in a perissodactyl-like ungulate Cambaytherium is published by von Koenigswald et al. (2018).[540]
  • Anatomical redescription of the periptychid species Periptychus carinidens is published by Shelley, Williamson & Brusatte (2018).[541]
  • Description of new fossil material of the hyaenodont species Prionogale breviceps from the Miocene of Kenya and Uganda, and a study on the anatomy of teeth of Namasector soriae, is published by Morales & Pickford (2018).[542]
  • Partial skull of Hyaenodon leptorhynchus is described from the Chattian deposits in Séon Saint-André (Marseille, France) by Solé et al. (2018).[543]
  • A study on the early Pleistocene leporid fossils from the Roland Springs Ranch Locality 1 (Texas, United States), considered against the backdrop of Neogene-Quaternary faunal turnover that included the radiation within the subfamily Leporinae, is published by Moretti (2018).[544]
Name Novelty Status Authors Age Unit Location Notes Images

Ambolestes[525]

Gen. et sp. nov

Valid

Bi et al.

Early Cretaceous

Yixian Formation

China

An early eutherian. Genus includes new species A. zhoui.

Arcius hookeri[545]

Sp. nov

Valid

López-Torres & Silcox

Early Eocene

Blackheath Beds

United Kingdom

A member of Plesiadapiformes belonging to the family Paromomyidae.

Arcius ilerdensis[545]

Sp. nov

Valid

López-Torres & Silcox

Early Eocene

Spain

A member of Plesiadapiformes belonging to the family Paromomyidae.

Chiromyoides mauberti[546]

Sp. nov

Valid

De Bast, Gagnaison & Smith

Late Paleocene

France

A member of Plesiadapiformes belonging to the family Plesiadapidae.

Darbonetus sigei[547]

Sp. nov

Valid

Hooker

Eocene (Priabonian)

France

A member of the family Nyctitheriidae.

Dissacus raslanloubatieri[548]

Sp. nov

Valid

Solé et al.

Eocene (Ypresian)

France

A member of the family Mesonychidae.

Dissacus rougierae[548]

Sp. nov

Valid

Solé et al.

Eocene (Ypresian)

France

A member of the family Mesonychidae.

Eomorphippus bondi[549]

Sp. nov

Valid

Wyss, Flynn & Croft

Early Oligocene

Abanico Formation

Chile

A notohippid notoungulate.

Eomorphippus neilopdykei[549]

Sp. nov

Valid

Wyss, Flynn & Croft

Early Oligocene

Abanico Formation

Chile

A notohippid notoungulate.

Falcontoxodon[550]

Gen. et sp. nov

Valid

Carrillo et al.

Early Pliocene–late Pliocene or early Pleistocene

Falcón Basin
(Codore Formation
San Gregorio Formation)

Venezuela

A member of Toxodontidae. Genus includes new species F. aguilerai.

Ferrequitherium[551]

Gen. et sp. nov

Valid

Scott

Paleocene (early Tiffanian)

Paskapoo Formation

Canada
( Alberta)

A relative of Horolodectes. Genus includes new species F. sweeti.

Hilarcotherium miyou[550]

Sp. nov

Valid

Carrillo et al.

Middle Miocene

Castilletes Formation

Colombia

A member of Astrapotheriidae.

Hovurlestes[552]

Gen. et sp. nov

Valid

Lopatin & Averianov

Early Cretaceous (AptianAlbian)

Höovör locality

Mongolia

A basal member of Eutheria. The type species is H. noyon.

Llullataruca[553]

Gen. et sp. nov

Valid

McGrath, Anaya & Croft

Laventan

Bolivia

A member of Litopterna belonging the family Macraucheniidae. Genus includes new species L. shockeyi.

Platychoerops boyeri[546]

Sp. nov

Valid

De Bast, Gagnaison & Smith

Late Paleocene

France

A member of Plesiadapiformes belonging to the family Plesiadapidae.

Plesiadapis berruensis[554]

Sp. nov

Valid

Jehle et al.

Late Paleocene

France

A member of Plesiadapiformes.

Plesiadapis ploegi[546]

Sp. nov

Valid

De Bast, Gagnaison & Smith

Late Paleocene

France

A member of Plesiadapiformes belonging to the family Plesiadapidae.

Propterodon panganensis[555]

Sp. nov

Valid

De Bonis et al.

Middle Eocene

Pondaung Formation

Myanmar

A member of the family Hyaenodontidae.

Rosendo[549]

Gen. et comb. nov

Valid

Wyss, Flynn & Croft

Early Oligocene

Sarmiento Formation

Argentina
Chile

A notohippid notoungulate; a new genus for "Eomorphippus" pascuali Simpson (1967).

Rusconitherium[556]

Gen. et comb. nov

Valid

Cerdeño, Vera & Combina

Early Miocene

Mariño Formation

Argentina

A mesotheriid notoungulate; a new genus for "Trachytherus" mendocensis Simpson & Minoprio (1949).

Sardolagus[557]

Gen. et sp. nov

Valid

Angelone et al.

Early Pleistocene

Italy

A member of the family Leporidae. Genus includes new species S. obscurus.

Shargainosorex[558]

Gen. et sp. nov

Valid

Zazhigin & Voyta

Middle Miocene

Oshin Suite

Mongolia

A shrew belonging to the subfamily Crocidosoricinae. The type species is S. angustirostris.

Termastherium[549]

Gen. et sp. nov

Valid

Wyss, Flynn & Croft

Early Oligocene

Abanico Formation

Chile

A leontiniid notoungulate. Genus includes new species T. flacoensis.

'Theosodon' arozquetai[553]

Sp. nov

Valid

McGrath, Anaya & Croft

Laventan

Bolivia

A member of Litopterna belonging the family Macraucheniidae, tentatively referred to the genus Theosodon.

Wyonycteris kingi[559] Sp. nov Valid Hooker Paleogene Woolwich United Kingdom A member of the family Nyctitheriidae. Announced in 2018; the final version of the article naming it was published in 2020.

Xotodon caravela[560]

Sp. nov

Valid

Armella, García-López & Dominguez

Late Miocene-early Pliocene

Aconquija Formation

Argentina

Zofiagale[561]

Gen. et sp. nov

Valid

López-Torres & Fostowicz-Frelik

Late Eocene

Ergilin Dzo Formation

Mongolia

A relative of Anagale. The type species is Z. ergilinensis.

Other mammals

Name Novelty Status Authors Age Unit Location Notes Images

Brasilestes[567]

Gen. et sp. nov

Castro et al.

Late Cretaceous

Adamantina Formation

Brazil

An early member of Tribosphenida. The type species is B. stardusti.

Catopsalis kakwa[568]

Sp. nov

Valid

Scott, Weil & Theodor

Early Paleocene

Canada
( Alberta)

A multituberculate belonging to the group Taeniolabidoidea.

Cifelliodon[569]

Gen. et sp. nov

Valid

Huttenlocker et al.

Early Cretaceous

Cedar Mountain Formation

United States
( Utah)

A member of Haramiyida belonging to the family Hahnodontidae. The type species is C. wahkarmoosuch.

Golercosmodon[570]

Gen. et sp. nov

Valid

Lofgren et al.

Paleocene (Tiffanian)

Goler Formation

United States
( California)

A multituberculate. Genus includes new species G. mylesi.

Khorotherium[571]

Gen. et sp. nov

Valid

Averianov et al.

Early Cretaceous (?Berriasian-Barremian)

Batylykh Formation

Russia
( Sakha Republic)

A member of Docodonta belonging to the family Tegotheriidae. The type species is K. yakutensis.

Litovoi[572]

Gen. et sp. nov

Disputed

Csiki-Sava et al.

Late Cretaceous (Maastrichtian)

Romania

A multituberculate belonging to the family Kogaionidae. The type species is L. tholocephalos. Smith et al. (2021) considered it to be a junior synonym of Barbatodon transylvanicus.[573]

Sangarotherium[571]

Gen. et sp. nov

Valid

Averianov et al.

Early Cretaceous (?Berriasian-Barremian)

Batylykh Formation

Russia
( Sakha Republic)

A member of Eutriconodonta of uncertain phylogenetic placement. The type species is S. aquilonium.

References

  1. ^ K. E. Jones; K. D. Angielczyk; P. D. Polly; J. J. Head; V. Fernandez; J. K. Lungmus; S. Tulga; S. E. Pierce (2018). "Fossils reveal the complex evolutionary history of the mammalian regionalized spine" (PDF). Science. 361 (6408): 1249–1252. Bibcode:2018Sci...361.1249J. doi:10.1126/science.aar3126. PMID 30237356. S2CID 52310287.
  2. ^ Stephan Lautenschlager; Pamela G. Gill; Zhe-Xi Luo; Michael J. Fagan; Emily J. Rayfield (2018). "The role of miniaturization in the evolution of the mammalian jaw and middle ear". Nature. 561 (7724): 533–537. Bibcode:2018Natur.561..533L. doi:10.1038/s41586-018-0521-4. PMID 30224748. S2CID 52284325.
  3. ^ A.W. Crompton; C. Musinsky; G.W. Rougier; B.-A.S. Bhullar; J. A. Miyamae (2018). "Origin of the lateral wall of the mammalian skull: fossils, monotremes and therians revisited". Journal of Mammalian Evolution. 25 (3): 301–313. doi:10.1007/s10914-017-9388-7. S2CID 16072755.
  4. ^ Derek C. W. Raisanen; Stephen T. Hasiotis (2018). "New ichnotaxa of vertebrate burrows from the Salt Wash Member, Upper Jurassic Morrison Formation, south-eastern Utah (USA)". Annales Societatis Geologorum Poloniae. 88 (2): 181–202. doi:10.14241/asgp.2018.017.
  5. ^ Mathias M. Pires; Brian D. Rankin; Daniele Silvestro; Tiago B. Quental (2018). "Diversification dynamics of mammalian clades during the K–Pg mass extinction". Biology Letters. 14 (9): 20180458. doi:10.1098/rsbl.2018.0458. PMC 6170748. PMID 30258031.
  6. ^ Stephanie M. Smith; Courtney J. Sprain; William A. Clemens; Donald L. Lofgren; Paul R. Renne; Gregory P. Wilson (2018). "Early mammalian recovery after the end-Cretaceous mass extinction: A high-resolution view from McGuire Creek area, Montana, USA". GSA Bulletin. 130 (11–12): 2000–2014. doi:10.1130/B31926.1. S2CID 134501919.
  7. ^ Caitlin Leslie; Daniel Peppe; Thomas Williamson; Dario Bilardello; Matthew Heizler; Ross Secord; Tyler Leggett (2018). "High-resolution magnetostratigraphy of the Upper Nacimiento Formation, San Juan Basin, New Mexico, USA: Implications for basin evolution and mammalian turnover". American Journal of Science. 318 (3): 300–334. Bibcode:2018AmJS..318..300L. doi:10.2475/03.2018.02. S2CID 135327595.
  8. ^ Felisa A. Smith; Rosemary E. Elliott Smith; S. Kathleen Lyons; Jonathan L. Payne (2018). "Body size downgrading of mammals over the late Quaternary". Science. 360 (6386): 310–313. Bibcode:2018Sci...360..310S. doi:10.1126/science.aao5987. PMID 29674591. S2CID 5046004.
  9. ^ Miranta Kouvari; Alexandra A.E. van der Geer (2018). "Biogeography of extinction: The demise of insular mammals from the Late Pleistocene till today". Palaeogeography, Palaeoclimatology, Palaeoecology. 505: 295–304. Bibcode:2018PPP...505..295K. doi:10.1016/j.palaeo.2018.06.008. S2CID 133848944.
  10. ^ Adrián Castro-Insua; Carola Gómez-Rodríguez; John J. Wiens; Andrés Baselga (2018). "Climatic niche divergence drives patterns of diversification and richness among mammal families". Scientific Reports. 8 (1): Article number 8781. Bibcode:2018NatSR...8.8781C. doi:10.1038/s41598-018-27068-y. PMC 5993713. PMID 29884843.
  11. ^ Julia V. Tejada-Lara; Bruce J. MacFadden; Lizette Bermudez; Gianmarco Rojas; Rodolfo Salas-Gismondi; John J. Flynn (2018). "Body mass predicts isotope enrichment in herbivorous mammals". Proceedings of the Royal Society B: Biological Sciences. 285 (1881): 20181020. doi:10.1098/rspb.2018.1020. PMC 6030519. PMID 30051854.
  12. ^ Jiekun He; Holger Kreft; Siliang Lin; Yang Xu; Haisheng Jiang (2018). "Cenozoic evolution of beta diversity and a Pleistocene emergence for modern mammal faunas in China". Global Ecology and Biogeography. 27 (11): 1326–1338. doi:10.1111/geb.12800. S2CID 91788893.
  13. ^ Robin M. D. Beck; Charles Baillie (2018). "Improvements in the fossil record may largely resolve current conflicts between morphological and molecular estimates of mammal phylogeny". Proceedings of the Royal Society B: Biological Sciences. 285 (1893): 20181632. doi:10.1098/rspb.2018.1632. PMC 6304057. PMID 30963896.
  14. ^ C. Verity Bennett; Paul Upchurch; Francisco J. Goin; Anjali Goswami (2018). "Deep time diversity of metatherian mammals: implications for evolutionary history and fossil-record quality". Paleobiology. 44 (2): 171–198. doi:10.1017/pab.2017.34. S2CID 46796692.
  15. ^ Alexandria L. Brannick; Gregory P. Wilson (2018). "New specimens of the Late Cretaceous metatherian Eodelphis and the evolution of hard-object feeding in the Stagodontidae". Journal of Mammalian Evolution. 27 (1): 1–16. doi:10.1007/s10914-018-9451-z. S2CID 52883299.
  16. ^ Darin A. Croft; Russell K. Engelman; Tatiana Dolgushina; Gina Wesley (2018). "Diversity and disparity of sparassodonts (Metatheria) reveal non-analogue nature of ancient South American mammalian carnivore guilds". Proceedings of the Royal Society B: Biological Sciences. 285 (1870): 20172012. doi:10.1098/rspb.2017.2012. PMC 5784193. PMID 29298933.
  17. ^ Christian de Muizon; Sandrine Ladevèze; Charlène Selva; Robin Vignaud; Florent Goussard (2018). "Allqokirus australis (Sparassodonta, Metatheria) from the early Palaeocene of Tiupampa (Bolivia) and the rise of the metatherian carnivorous radiation in South America". Geodiversitas. 40 (16): 363–459. doi:10.5252/geodiversitas2018v40a16. S2CID 134681633.
  18. ^ Lauren C. White; Frédérik Saltré; Corey J. A. Bradshaw; Jeremy J. Austin (2018). "High-quality fossil dates support a synchronous, Late Holocene extinction of devils and thylacines in mainland Australia". Biology Letters. 14 (1): 20170642. doi:10.1098/rsbl.2017.0642. PMC 5803592. PMID 29343562.
  19. ^ Lauren C. White; Kieren J. Mitchell; Jeremy J. Austin (2018). "Ancient mitochondrial genomes reveal the demographic history and phylogeography of the extinct, enigmatic thylacine (Thylacinus cynocephalus)". Journal of Biogeography. 45 (1): 1–13. doi:10.1111/jbi.13101. S2CID 91011378.
  20. ^ Anna Brüniche–Olsen; Menna E. Jones; Christopher P. Burridge; Elizabeth P. Murchison; Barbara R. Holland; Jeremy J. Austin (2018). "Ancient DNA tracks the mainland extinction and island survival of the Tasmanian devil". Journal of Biogeography. 45 (5): 963–976. doi:10.1111/jbi.13214.
  21. ^ Wendy den Boer; Benjamin P. Kear (2018). "Is the fossil rat-kangaroo Palaeopotorous priscus the most basally branching stem macropodiform?". Journal of Vertebrate Paleontology. 38 (2): e1428196. doi:10.1080/02724634.2017.1428196. S2CID 90116198.
  22. ^ Kaylene Butler; Kenny J. Travouillon; Gilbert J. Price; Michael Archer; Suzanne J. Hand (2018). "Revision of Oligo-Miocene kangaroos, Ganawamaya and Nambaroo (Marsupialia: Macropodiformes, Balbaridae)". Palaeontologia Electronica. 21 (1): Article number 21.1.8A. doi:10.26879/747.
  23. ^ Aidan M. C. Couzens; Gavin J. Prideaux (2018). "Rapid Pliocene adaptive radiation of modern kangaroos". Science. 362 (6410): 72–75. Bibcode:2018Sci...362...72C. doi:10.1126/science.aas8788. PMID 30287658. S2CID 52921257.
  24. ^ Roderick T. Wells; Aaron B. Camens (2018). "New skeletal material sheds light on the palaeobiology of the Pleistocene marsupial carnivore, Thylacoleo carnifex". PLOS ONE. 13 (12): e0208020. Bibcode:2018PLoSO..1308020W. doi:10.1371/journal.pone.0208020. PMC 6291118. PMID 30540785.
  25. ^ Russell K. Engelman; Federico Anaya; Darin A. Croft (2020). "Australogale leptognathus, gen. et sp. nov., a second species of small sparassodont (Mammalia: Metatheria) from the middle Miocene locality of Quebrada Honda, Bolivia". Journal of Mammalian Evolution. 27 (1): 37–54. doi:10.1007/s10914-018-9443-z. S2CID 49473591.
  26. ^ Leonardo M. Carneiro; Édison V. Oliveira; Francisco J. Goin (2018). "Austropediomys marshalli gen. et sp. nov., a new Pediomyoidea (Mammalia, Metatheria) from the Paleogene of Brazil: paleobiogeographic implications". Revista Brasileira de Paleontologia. 21 (2): 120–131. doi:10.4072/rbp.2018.2.03.
  27. ^ Leonardo M. Carneiro (2018). "A new protodidelphid (Mammalia, Marsupialia, Didelphimorphia) from the Itaboraí Basin and its implications for the evolution of the Protodidelphidae". Anais da Academia Brasileira de Ciências. 91 (Suppl. 2): e20180440. doi:10.1590/0001-3765201820180440. PMID 30365721.
  28. ^ Russell K. Engelman; John J. Flynn; Philip Gans; André R. Wyss; Darin A. Croft (2018). "Chlorocyon phantasma, a late Eocene borhyaenoid (Mammalia, Metatheria, Sparassodonta) from the Los Helados locality, Andean Main Range, central Chile". American Museum Novitates (3918): 1–22. doi:10.1206/3918.1. hdl:2246/6922. S2CID 92580823.
  29. ^ Laura Chornogubsky; A. Natalia Zimicz; Francisco J. Goin; Juan C. Fernicola; Patricio Payrola; Magalí Cárdenas (2018). "New Palaeogene metatherians from the Quebrada de Los Colorados Formation at Los Cardones National Park (Salta Province, Argentina)". Journal of Systematic Palaeontology. 17 (7): 539–555. doi:10.1080/14772019.2017.1417333. S2CID 91140722.
  30. ^ a b Joshua E. Cohen (2018). "Earliest Divergence of Stagodontid (Mammalia: Marsupialiformes) Feeding Strategies from the Late Cretaceous (Turonian) of North America". Journal of Mammalian Evolution. 25 (2): 165–177. doi:10.1007/s10914-017-9382-0. S2CID 18977109.
  31. ^ a b Grégoire Métais; Pauline M. Coster; John R. Kappelman; Alexis Licht; Faruk Ocakoğlu; Michael H. Taylor; K. Christopher Beard (2018). "Eocene metatherians from Anatolia illuminate the assembly of an island fauna during Deep Time". PLOS ONE. 13 (11): e0206181. Bibcode:2018PLoSO..1306181M. doi:10.1371/journal.pone.0206181. PMC 6235269. PMID 30427946.
  32. ^ William W. Korth (2018). "Review of the marsupials (Mammalia: Metatheria) from the late Paleogene (Chadronian–Arikareean: late Eocene–late Oligocene) of North America". PalZ. 92 (3): 499–523. doi:10.1007/s12542-017-0396-y. S2CID 135174395.
  33. ^ Michael Archer; Pippa Binfield; Suzanne J. Hand; Karen H. Black; Phillip Creaser; Troy J. Myers; Anna K. Gillespie; Derrick A. Arena; John Scanlon; Neville Pledge; Jenni Thurmer (2018). "Miminipossum notioplanetes, a Miocene forest-dwelling phalangeridan (Marsupialia; Diprotodontia) from northern and central Australia". Palaeontologia Electronica. 21 (1): Article number 21.1.2A. doi:10.26879/757.
  34. ^ Kenny J. Travouillon; Matthew J. Phillips (2018). "Total evidence analysis of the phylogenetic relationships of bandicoots and bilbies (Marsupialia: Peramelemorphia): reassessment of two species and description of a new species". Zootaxa. 4378 (2): 224–256. doi:10.11646/zootaxa.4378.2.3. PMID 29690027.
  35. ^ Francisco J. Goin; Emma C. Vieytes; Javier N. Gelfo; Laura Chornogubsky; Ana N. Zimicz; Marcelo A. Reguero (2020). "New metatherian mammal from the early Eocene of Antarctica". Journal of Mammalian Evolution. 27 (1): 17–36. doi:10.1007/s10914-018-9449-6. S2CID 91932037.
  36. ^ Philippa Brewer; Michael Archer; Suzanne Hand; Gilbert J. Price (2018). "A new species of Miocene wombat (Marsupialia, Vombatiformes) from Riversleigh, Queensland, Australia, and implications for the evolutionary history of the Vombatidae". Palaeontologia Electronica. 21 (2): Article number 21.2.27A. doi:10.26879/870.
  37. ^ Leonardo M. Carneiro (2018). "A new species of Varalphadon (Mammalia, Metatheria, Sparassodonta) from the upper Cenomanian of southern Utah, North America: Phylogenetic and biogeographic insights". Cretaceous Research. 84: 88–96. doi:10.1016/j.cretres.2017.11.004.
  38. ^ William Gearty; Craig R. McClain; Jonathan L. Payne (2018). "Energetic tradeoffs control the size distribution of aquatic mammals". Proceedings of the National Academy of Sciences of the United States of America. 115 (16): 4194–4199. Bibcode:2018PNAS..115.4194G. doi:10.1073/pnas.1712629115. PMC 5910812. PMID 29581289.
  39. ^ María Cristina Cardonatto; Ricardo Néstor Melchor (2018). "Large mammal burrows in late Miocene calcic paleosols from central Argentina: paleoenvironment, taphonomy and producers". PeerJ. 6: e4787. doi:10.7717/peerj.4787. PMC 5969051. PMID 29844958.
  40. ^ Víctor Adrián Pérez-Crespo; César A. Laurito; Joaquín Arroyo-Cabrales; Ana L. Valerio; Pedro Morales-Puente; Edith Cienfuegos-Alvarado; Francisco J. Otero (2018). "Feeding habits and habitat of herbivorous mammals from the Early–Late Hemphillian (Miocene) of Costa Rica". Acta Palaeontologica Polonica. 63 (4): 645–652. doi:10.4202/app.00517.2018.
  41. ^ Ferhat Kaya; Faysal Bibi; Indrė Žliobaitė; Jussi T. Eronen; Tang Hui; Mikael Fortelius (2018). "The rise and fall of the Old World savannah fauna and the origins of the African savannah biome". Nature Ecology & Evolution. 2 (2): 241–246. doi:10.1038/s41559-017-0414-1. hdl:10138/326196. PMID 29292396. S2CID 52810119.
  42. ^ Juan L. Cantalapiedra; M. Soledad Domingo; Laura Domingo (2018). "Multi-scale interplays of biotic and abiotic drivers shape mammalian sub-continental diversity over millions of years". Scientific Reports. 8 (1): Article number 13413. Bibcode:2018NatSR...813413C. doi:10.1038/s41598-018-31699-6. PMC 6128930. PMID 30194335.
  43. ^ Nikolai Spassov; Denis Geraads; Latinka Hristova; Georgi N. Markov; Biljana Garevska; Risto Garevska (2018). "The late Miocene mammal faunas of the Republic of Macedonia (FYROM)" (PDF). Palaeontographica Abteilung A. 311 (1–6): 1–85. doi:10.1127/pala/2018/0073. S2CID 134139783.
  44. ^ Jian'en Hen; Zhaogang Shao; Qiguang Chen; Biao Xu; Qianqian Zhang; Jia Yu; Qingwei Meng; Xuefeng Zhang; Jin Wang; Dagang Zhu (2018). "Magnetochronology of late Miocene mammal fauna in Xining basin, NE Tibetan Plateau, China". Acta Geologica Sinica (English Edition). 92 (6): 2067–2078. doi:10.1111/1755-6724.13716. S2CID 135216432.
  45. ^ J. Tyler Faith (2018). "Paleodietary change and its implications for aridity indices derived from δ18O of herbivore tooth enamel". Palaeogeography, Palaeoclimatology, Palaeoecology. 490: 571–578. Bibcode:2018PPP...490..571F. doi:10.1016/j.palaeo.2017.11.045.
  46. ^ Scott A. Blumenthal; Naomi E. Levin; Francis H. Brown; Jean-Philip Brugal; Kendra L. Chritz; Thure E. Cerling (2018). "Diet and evaporation sensitivity in African ungulates: A comment on Faith (2018)". Palaeogeography, Palaeoclimatology, Palaeoecology. 506: 250–251. Bibcode:2018PPP...506..250B. doi:10.1016/j.palaeo.2018.02.022. S2CID 135094022.
  47. ^ J. Tyler Faith (2018). "We need to critically evaluate our assumptions: Reply to Blumenthal et al. (2018)". Palaeogeography, Palaeoclimatology, Palaeoecology. 506: 252–253. Bibcode:2018PPP...506..252F. doi:10.1016/j.palaeo.2018.02.023. S2CID 134698793.
  48. ^ Susanne Cote; John Kingston; Alan Deino; Alisa Winkler; Robert Kityo; Laura MacLatchy (2018). "Evidence for rapid faunal change in the early Miocene of East Africa based on revised biostratigraphic and radiometric dating of Bukwa, Uganda". Journal of Human Evolution. 116: 95–107. doi:10.1016/j.jhevol.2017.12.001. PMID 29477184.
  49. ^ Andrew Du; Zeresenay Alemseged (2018). "Diversity analysis of Plio-Pleistocene large mammal communities in the Omo-Turkana Basin, eastern Africa". Journal of Human Evolution. 124: 25–39. doi:10.1016/j.jhevol.2018.07.004. PMID 30153945. S2CID 52114894.
  50. ^ Justin W. Adams (2018). "Fossil mammals from the Gondolin Dump A ex situ hominin deposits, South Africa". PeerJ. 6: e5393. doi:10.7717/peerj.5393. PMC 6084286. PMID 30123713.
  51. ^ Kevin T. Uno; Florent Rivals; Faysal Bibi; Michael Pante; Jackson Njau; Ignacio de la Torre (2018). "Large mammal diets and paleoecology across the Oldowan–Acheulean transition at Olduvai Gorge, Tanzania from stable isotope and tooth wear analyses". Journal of Human Evolution. 120: 76–91. doi:10.1016/j.jhevol.2018.01.002. PMID 29752005. S2CID 21663061.
  52. ^ Florent Rivals; Kevin T. Uno; Faysal Bibi; Michael C. Pante; Jackson Njau; Ignacio de la Torre (2018). "Dietary traits of the ungulates from the HWK EE site at Olduvai Gorge (Tanzania): Diachronic changes and seasonality". Journal of Human Evolution. 120: 203–214. doi:10.1016/j.jhevol.2017.08.011. PMID 28870375. S2CID 35815586.
  53. ^ a b Faysal Bibi; Michael Pante; Antoine Souron; Kathlyn Stewart; Sara Varela; Lars Werdelin; Jean-Renaud Boisserie; Mikael Fortelius; Leslea Hlusko; Jackson Njau; Ignacio de la Torre (2018). "Paleoecology of the Serengeti during the Oldowan-Acheulean transition at Olduvai Gorge, Tanzania: The mammal and fish evidence". Journal of Human Evolution. 120: 48–75. doi:10.1016/j.jhevol.2017.10.009. hdl:10138/303935. PMID 29191415.
  54. ^ Mathias M. Pires; Paulo R. Guimarães; Mauro Galetti; Pedro Jordano (2018). "Pleistocene megafaunal extinctions and the functional loss of long-distance seed-dispersal services". Ecography. 41 (1): 153–163. doi:10.1111/ecog.03163. S2CID 31921405.
  55. ^ Flavia Strani; Daniel DeMiguel; Fabio Bona; Raffaele Sardella; Italo Biddittu; Luciano Bruni; Adelaide De Castro; Francesco Guadagnoli; Luca Bellucci (2018). "Ungulate dietary adaptations and palaeoecology of the Middle Pleistocene site of Fontana Ranuccio (Anagni, Central Italy)". Palaeogeography, Palaeoclimatology, Palaeoecology. 496: 238–247. Bibcode:2018PPP...496..238S. doi:10.1016/j.palaeo.2018.01.041.
  56. ^ Flavia Strani; Daniel DeMiguel; Luca Bellucci; Raffaele Sardella (2018). "Dietary response of early Pleistocene ungulate communities to the climate oscillations of the Gelasian/Calabrian transition in Central Italy". Palaeogeography, Palaeoclimatology, Palaeoecology. 499: 102–111. Bibcode:2018PPP...499..102S. doi:10.1016/j.palaeo.2018.03.021. S2CID 135037751.
  57. ^ Jesús Rodríguez; Ana Mateos (2018). "Carrying capacity, carnivoran richness and hominin survival in Europe". Journal of Human Evolution. 118: 72–88. doi:10.1016/j.jhevol.2018.01.004. PMID 29606204.
  58. ^ Zhou Xinying; Yang Jilong; Wang Shiqi; Xiao Guoqiao; Zhao Keliang; Zheng Yan; Shen Hui; Li Xiaoqiang (2018). "Vegetation change and evolutionary response of large mammal fauna during the Mid-Pleistocene Transition in temperate northern East Asia". Palaeogeography, Palaeoclimatology, Palaeoecology. 505: 287–294. Bibcode:2018PPP...505..287Z. doi:10.1016/j.palaeo.2018.06.007. S2CID 134868767.
  59. ^ Dan Zhu; Philippe Ciais; Jinfeng Chang; Gerhard Krinner; Shushi Peng; Nicolas Viovy; Josep Peñuelas; Sergey Zimov (2018). "The large mean body size of mammalian herbivores explains the productivity paradox during the Last Glacial Maximum". Nature Ecology & Evolution. 2 (4): 640–649. doi:10.1038/s41559-018-0481-y. PMC 5868731. PMID 29483680.
  60. ^ F. Carotenuto; M. Di Febbraro; M. Melchionna; A. Mondanaro; S. Castiglione; C. Serio; L.Rook; A. Loy; M.S. Lima-Ribeiro; J.A.F. Diniz-Filho; P. Raia (2018). "The well-behaved killer: Late Pleistocene humans in Eurasia were significantly associated with living megafauna only". Palaeogeography, Palaeoclimatology, Palaeoecology. 500: 24–32. Bibcode:2018PPP...500...24C. doi:10.1016/j.palaeo.2018.03.036. S2CID 133820001.
  61. ^ J. Tyler Faith; John Rowan; Andrew Du; Paul L. Koch (2018). "Plio-Pleistocene decline of African megaherbivores: No evidence for ancient hominin impacts". Science. 362 (6417): 938–941. Bibcode:2018Sci...362..938F. doi:10.1126/science.aau2728. PMID 30467167. S2CID 53755457.
  62. ^ Yahui Qiu; Hong Ao; Yunxiang Zhang; Peixian Shu; Yongxiang Li; Xingwen Li; Peng Zhang (2018). "Magnetostratigraphic dating of the Linyi Fauna and implications for sequencing the mammalian faunas on the Chinese Loess Plateau". Quaternary Research. 89 (3): 629–644. Bibcode:2018QuRes..89..629Q. doi:10.1017/qua.2017.83. S2CID 135007131.
  63. ^ A. K. Agadjanian; M. V. Shunkov (2018). "Late Pleistocene mammals of the Northwestern Altai: Report 1. Anui Basin". Paleontological Journal. 52 (12): 1450–1460. doi:10.1134/S0031030118120043. S2CID 92543390.
  64. ^ A. K. Agadjanian; M. V. Shunkov (2018). "Late Pleistocene mammals of the Northwestern Altai: Report 2. Charysh Basin". Paleontological Journal. 52 (12): 1461–1472. doi:10.1134/S0031030118120055. S2CID 195300731.
  65. ^ Alexandra A. E. van der Geer; George A. Lyras; Philipp Mitteroecker; Ross D. E. MacPhee (2018). "From Jumbo to Dumbo: cranial shape changes in elephants and hippos during phyletic dwarfing". Evolutionary Biology. 45 (3): 303–317. doi:10.1007/s11692-018-9451-1. S2CID 4663435.
  66. ^ Leonardo Santos Avilla; Helena Machado; Herminio Ismael de Araujo-Junior; Dimila Mothe; Alline Rotti; Karoliny de Oliveira; Victoria Maldonado; Ana Maria Graciano Figueiredo; Angela Kinoshita; Oswaldo Baffa (2018). "Pleistocene Equus (Equidae: Mammalia) from northern Brazil: evidence of scavenger behavior by ursids on South American horses". Ameghiniana. 55 (5): 517–530. doi:10.5710/AMGH.05.07.2018.3069. S2CID 134160124.
  67. ^ Jack M. Broughton; Elic M. Weitzel (2018). "Population reconstructions for humans and megafauna suggest mixed causes for North American Pleistocene extinctions". Nature Communications. 9 (1): Article number 5441. Bibcode:2018NatCo...9.5441B. doi:10.1038/s41467-018-07897-1. PMC 6303330. PMID 30575758.
  68. ^ Yoland Savriama; Mia Valtonen; Juhana I. Kammonen; Pasi Rastas; Olli-Pekka Smolander; Annina Lyyski; Teemu J. Häkkinen; Ian J. Corfe; Sylvain Gerber; Isaac Salazar-Ciudad; Lars Paulin; Liisa Holm; Ari Löytynoja; Petri Auvinen; Jukka Jernvall (2018). "Bracketing phenogenotypic limits of mammalian hybridization". Royal Society Open Science. 5 (11): 180903. Bibcode:2018RSOS....580903S. doi:10.1098/rsos.180903. PMC 6281900. PMID 30564397.
  69. ^ Alessandro Marques de Oliveira; Charles Morphy D. Santos (2018). "Functional morphology and paleoecology of Pilosa (Xenarthra, Mammalia) based on a two-dimensional geometric morphometrics study of the humerus". Journal of Morphology. 279 (10): 1455–1467. doi:10.1002/jmor.20882. PMID 30105869. S2CID 51971287.
  70. ^ Luciano Varela; P. Sebastián Tambusso; Santiago J. Patiño; Mariana Di Giacomo; Richard A. Fariña (2018). "Potential distribution of fossil xenarthrans in South America during the late Pleistocene: co-pccurrence and provincialism". Journal of Mammalian Evolution. 25 (4): 539–550. doi:10.1007/s10914-017-9406-9. S2CID 25974749.
  71. ^ Daniela C. Kalthoff; Jeremy L. Green (2018). "Feeding ecology in Oligocene mylodontoid sloths (Mammalia, Xenarthra) as revealed by orthodentine microwear analysis". Journal of Mammalian Evolution. 25 (4): 551–564. doi:10.1007/s10914-017-9405-x. PMC 6209052. PMID 30443148.
  72. ^ Alberto Boscaini; Dawid A. Iurino; Guillaume Billet; Lionel Hautier; Raffaele Sardella; German Tirao; Timothy J. Gaudin; François Pujos (2018). "Phylogenetic and functional implications of the ear region anatomy of Glossotherium robustum (Xenarthra, Mylodontidae) from the Late Pleistocene of Argentina". The Science of Nature. 105 (3–4): Article 28. Bibcode:2018SciNa.105...28B. doi:10.1007/s00114-018-1548-y. hdl:11336/86750. PMID 29589123. S2CID 4700419.
  73. ^ Alberto Boscaini; Dawid A. Iurino; Raffaele Sardella; German Tirao; Timothy J. Gaudin; François Pujos (2018). "Digital cranial endocasts of the extinct sloth Glossotherium robustum (Xenarthra, Mylodontidae) from the late Pleistocene of Argentina: description and comparison with the extant sloths". Journal of Mammalian Evolution. 27 (1): 55–71. doi:10.1007/s10914-018-9441-1. S2CID 46974585.
  74. ^ Alfredo A. Carlini; Diego Brandoni; Rodolfo Sánchez; Marcelo R. Sánchez-Villagra (2018). "A new Megatheriinae skull (Xenarthra, Tardigrada) from the Pliocene of Northern Venezuela – implications for a giant sloth dispersal to Central and North America". Palaeontologia Electronica. 21 (2): Article number 21.2.16A. doi:10.26879/771.
  75. ^ P. Sebastián Tambusso; Luciano Varela; H. Gregory McDonald (2018). "Fusion of anterior thoracic vertebrae in Pleistocene ground sloths". Historical Biology: An International Journal of Paleobiology. 32 (2): 244–251. doi:10.1080/08912963.2018.1487419. S2CID 90758938.
  76. ^ Néstor Toledo; Gerardo De Iuliis; Sergio F. Vizcaíno; M. Susana Bargo (2018). "The concept of a pedolateral pes revisited: the giant sloths Megatherium and Eremotherium (Xenarthra, Folivora, Megatheriinae) as a case study". Journal of Mammalian Evolution. 25 (4): 525–537. doi:10.1007/s10914-017-9410-0. S2CID 8854661.
  77. ^ Diego Brandoni; Alfredo A. Carlini; Federico Anaya; Phil Gans; Darin A. Croft (2018). "New remains of Megathericulus patagonicus Ameghino, 1904 (Xenarthra, Tardigrada) from the Serravallian (middle Miocene) of Bolivia; chronological and biogeographical implications". Journal of Mammalian Evolution. 25 (3): 327–337. doi:10.1007/s10914-017-9384-y. S2CID 18176106.
  78. ^ Federico L. Agnolin; Nicolás R. Chimento; Diego Brandoni; Daniel Boh; Denise H. Campo; Mariano Magnussen; Francisco De Cianni (2018). "New Pleistocene remains of Megatherium filholi Moreno, 1888 (Mammalia, Xenarthra) from the Pampean Region: Implications for the diversity of Megatheriinae of the Quaternary of South America". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 289 (3): 339–348. doi:10.1127/njgpa/2018/0777. S2CID 134660849.
  79. ^ Eli Amson; Guillaume Billet; Christian de Muizon (2018). "Evolutionary adaptation to aquatic lifestyle in extinct sloths can lead to systemic alteration of bone structure". Proceedings of the Royal Society B: Biological Sciences. 285 (1878): 20180270. doi:10.1098/rspb.2018.0270. PMC 5966604. PMID 29743254.
  80. ^ Luciano Brambilla; Damián A. Ibarra (2018). "The occipital region of late Pleistocene Mylodontidae of Argentina" (PDF). Boletín del Instituto de Fisiografía y Geología. 88: 1–9.
  81. ^ Frédéric Delsuc; Melanie Kuch; Gillian C. Gibb; Jonathan Hughes; Paul Szpak; John Southon; Jacob Enk; Ana T. Duggan; Hendrik N. Poinar (2018). "Resolving the phylogenetic position of Darwin's extinct ground sloth (Mylodon darwinii) using mitogenomic and nuclear exon data". Proceedings of the Royal Society B: Biological Sciences. 285 (1878): 20180214. doi:10.1098/rspb.2018.0214. PMC 5966596. PMID 29769358.
  82. ^ Carlos A. Luna; Ignacio A. Cerda; Alfredo E. Zurita; Romina Gonzalez; M. Cecilia Prieto; Dimila Mothé; Leonardo S. Avilla (2018). "Distinguishing Quaternary glyptodontine cingulates in South America: How informative are juvenile specimens?". Acta Palaeontologica Polonica. 63 (1): 159–170. doi:10.4202/app.00409.2017.
  83. ^ Pablo Toriño; Daniel Perea (2018). "New contributions to the systematics of the "Plohophorini" (Mammalia, Cingulata, Glyptodontidae) from Uruguay". Journal of South American Earth Sciences. 86: 410–430. Bibcode:2018JSAES..86..410T. doi:10.1016/j.jsames.2018.07.006. S2CID 134481193.
  84. ^ Alfredo Eduardo Zurita; David D. Gillette; Francisco Cuadrelli; Alfredo Armando Carlini (2018). "A tale of two clades: Comparative study of Glyptodon Owen and Glyptotherium Osborn (Xenarthra, Cingulata, Glyptodontidae)". Geobios. 51 (3): 247–258. doi:10.1016/j.geobios.2018.04.004. S2CID 134450624.
  85. ^ Martín Zamorano; Gustavo Juan Scillato-Yané; Esteban Soibelzon; Leopoldo Héctor Soibelzon; Ricardo Bonini; Sergio Gabriel Rodriguez (2018). "Hyoid apparatus of Panochthus sp. (Xenarthra; Glyptodontidae) from the Late Pleistocene of the Pampean Region (Argentina). Comparative description and muscle reconstruction". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 288 (2): 205–219. doi:10.1127/njgpa/2018/0733.
  86. ^ Fábio Cunha Guimarães de Lima; Kleberson de Oliveira Porpino (2018). "Ectoparasitism and infections in the exoskeletons of large fossil cingulates". PLOS ONE. 13 (10): e0205656. Bibcode:2018PLoSO..1305656D. doi:10.1371/journal.pone.0205656. PMC 6193641. PMID 30335796.
  87. ^ Juan C. Fernicola; Andrés Rinderknecht; Washington Jones; Sergio F. Vizcaíno; Kleberson Propino (2018). "A new species of Neoglyptatelus (Mammalia, Xenarthra, Cingulata) from the late Miocene of Uruguay provides new insights on the evolution of the dorsal armor in cingulates". Ameghiniana. 55 (3): 233–252. doi:10.5710/AMGH.02.12.2017.3150. hdl:11336/96801. S2CID 133785414.
  88. ^ a b Ascanio D. Rincón; Andrés Solórzano; H. Gregory McDonald; Marisol Montellano-Ballesteros (2018). "Two new megalonychid sloths (Mammalia: Xenarthra) from the Urumaco Formation (late Miocene), and their phylogenetic affinities". Journal of Systematic Palaeontology. 17 (5): 409–421. doi:10.1080/14772019.2018.1427639. S2CID 90207481.
  89. ^ Sarah R. Stinnesbeck; Eberhard Frey; Wolfgang Stinnesbeck (2018). "New insights on the paleogeographic distribution of the Late Pleistocene ground sloth genus Xibalbaonyx along the Mesoamerican Corridor". Journal of South American Earth Sciences. 85: 108–120. Bibcode:2018JSAES..85..108S. doi:10.1016/j.jsames.2018.05.004. S2CID 134541882.
  90. ^ Rodolphe Tabuce (2018). "New remains of Chambius kasserinensis from the Eocene of Tunisia and evaluation of proposed affinities for Macroscelidea (Mammalia, Afrotheria)". Historical Biology: An International Journal of Paleobiology. 30 (1–2): 251–266. doi:10.1080/08912963.2017.1297433. S2CID 90821969.
  91. ^ Matthew J. Mason; Nigel C. Bennett; Martin Pickford (2018). "The middle and inner ears of the Palaeogene golden mole Namachloris: A comparison with extant species". Journal of Morphology. 279 (3): 375–395. doi:10.1002/jmor.20779. hdl:2263/64145. PMID 29205455. S2CID 46876034.
  92. ^ Daryl P. Domning (2018). "Fossil Sirenia (Mammalia) of the Miocene Chesapeake Group, Eastern United States". Smithsonian Contributions to Paleobiology. 100 (100): 241–265. doi:10.5479/si.1943-6688.100.
  93. ^ Advait M. Jukar; S. Kathleen Lyons; Mark D. Uhen (2018). "A cranial correlate of body mass in proboscideans". Zoological Journal of the Linnean Society. 184 (3): 919–931. doi:10.1093/zoolinnean/zlx108.
  94. ^ William J. Sanders (2018). "Horizontal tooth displacement and premolar occurrence in elephants and other elephantiform proboscideans". Historical Biology: An International Journal of Paleobiology. 30 (1–2): 137–156. doi:10.1080/08912963.2017.1297436. S2CID 89904463.
  95. ^ Sayyed Ghyour Abbas; Muhammad Akbar Khan; Muhammad Adeeb Babar; Muhammad Hanif; Muhammad Akhtar (2018). "New materials of Choerolophodon (Proboscidea) from Dhok Pathan Formation of Siwaliks, Pakistan". Vertebrata PalAsiatica. 56 (4): 295–305. doi:10.19615/j.cnki.1000-3118.180103.
  96. ^ Yan Wu; Tao Deng; Yaowu Hu; Jiao Ma; Xinying Zhou; Limi Mao; Hanwen Zhang; Jie Ye; Shi-Qi Wang (2018). "A grazing Gomphotherium in Middle Miocene Central Asia, 10 million years prior to the origin of the Elephantidae". Scientific Reports. 8 (1): Article number 7640. Bibcode:2018NatSR...8.7640W. doi:10.1038/s41598-018-25909-4. PMC 5956065. PMID 29769581.
  97. ^ Erwin González-Guarda; Alia Petermann-Pichincura; Carlos Tornero; Laura Domingo; Jordi Agustí; Mario Pino; Ana M. Abarzúa; José M. Capriles; Natalia A. Villavicencio; Rafael Labarca; Violeta Tolorza; Paloma Sevilla; Florent Rivals (2018). "Multiproxy evidence for leaf-browsing and closed habitats in extinct proboscideans (Mammalia, Proboscidea) from Central Chile". Proceedings of the National Academy of Sciences of the United States of America. 115 (37): 9258–9263. Bibcode:2018PNAS..115.9258G. doi:10.1073/pnas.1804642115. PMC 6140480. PMID 30150377.
  98. ^ Gregory James Smith; Larisa R.G. Desantis (2018). "Dietary ecology of Pleistocene mammoths and mastodons as inferred from dental microwear textures". Palaeogeography, Palaeoclimatology, Palaeoecology. 492: 10–25. Bibcode:2018PPP...492...10S. doi:10.1016/j.palaeo.2017.11.024.
  99. ^ Hao-Wen Tong; Li Deng; Xi Chen; Bei Zhang; Jun Wen (2018). "Late Pleistocene proboscideans from Yangjiawan caves in Pingxiang of Jiangxi: with discussions on the Stegodon orientalisElephas maximus assemblage". Vertebrata PalAsiatica. 56 (4): 306–326. doi:10.19615/j.cnki.1000-3118.180410.
  100. ^ V.S. Baygusheva; V.V. Titov (2018). "Problems of the taxon Archidiskodon meridionalis gromovi Garutt et Alexejeva, 1964 validity: diagnosis, stratigraphic spreading and paleoecology" (PDF). Proceedings of the Zoological Institute of the Russian Academy of Sciences. 322 (3): 222–240. doi:10.31610/trudyzin/2018.322.3.222. S2CID 134302682.
  101. ^ I.V. Foronova (2018). "Early Quaternary history of the genus Archidiskodon (Proboscidea, Elephantidae) in Western Siberia: to the question of intermediate links in mammoth lineage" (PDF). Proceedings of the Zoological Institute of the Russian Academy of Sciences. 322 (3): 241–258. doi:10.31610/trudyzin/2018.322.3.241. S2CID 131763340.
  102. ^ Sergio Ros-Montoya; Maria Rita Palombo; María Patrocinio Espigares; Paul Palmqvist; Bienvenido Martínez-Navarro (2018). "The mammoth from the archaeo-paleontological site of Huéscar-1: A tile in the puzzling question of the replacement of Mammuthus meridionalis by Mammuthus trogontherii in the late Early Pleistocene of Europe". Quaternary Science Reviews. 197: 336–351. doi:10.1016/j.quascirev.2018.08.017. S2CID 135176392.
  103. ^ Lee Koren; Devorah Matas; Patrícia Pečnerová; Love Dalén; Alexei Tikhonov; M. Thomas P. Gilbert; Katherine E. Wynne-Edwards; Eli Geffen (2018). "Testosterone in ancient hair from an extinct species". Palaeontology. 61 (6): 797–802. doi:10.1111/pala.12391.
  104. ^ Anatoly V. Lozhkin; Patricia M. Anderson (2018). "Another perspective on the age and origin of the Berelyokh mammoth site (northeast Siberia)". Quaternary Research. 89 (2): 459–477. Bibcode:2018QuRes..89..459L. doi:10.1017/qua.2018.3. S2CID 134501307.
  105. ^ Vladimir V. Pitulko; Elena Y. Pavlova; Aleksandr E. Basilyan; Pavel A. Nikolskiy (2019). "Another perspective on the age and origin of the Berelyokh mammoth site—Comment to the paper published by Lozhkin and Anderson, Quaternary Research 89 (2018), 459–477". Quaternary Research. 91 (2): 910–913. Bibcode:2019QuRes..91..910P. doi:10.1017/qua.2018.86.
  106. ^ Anatoly V. Lozhkin; Patricia M. Anderson (2019). "Another perspective on the age and origin of the Berelyokh mammoth site: response to Pitulko et al". Quaternary Research. 91 (2): 914–915. Bibcode:2019QuRes..91..914L. doi:10.1017/qua.2018.97.
  107. ^ Adam Nadachowski; Grzegorz Lipecki; Mateusz Baca; Michał Żmihorski; Jarosław Wilczyński (2018). "Impact of climate and humans on the range dynamics of the woolly mammoth (Mammuthus primigenius) in Europe during MIS 2". Quaternary Research. 90 (3): 439–456. Bibcode:2018QuRes..90..439N. doi:10.1017/qua.2018.54. S2CID 133934898.
  108. ^ Gary Haynes; Janis Klimowicz; Piotr Wojtal (2018). "A comparative study of woolly mammoths from the Gravettian site Kraków Spadzista (Poland), based on estimated shoulder heights, demography, and life conditions". Quaternary Research. 90 (3): 483–502. Bibcode:2018QuRes..90..483H. doi:10.1017/qua.2018.60. S2CID 134507941.
  109. ^ Dorothée G. Drucker; Rhiannon E. Stevens; Mietje Germonpré; Mikhail V. Sablin; Stéphane Péan; Hervé Bocherens (2018). "Collagen stable isotopes provide insights into the end of the mammoth steppe in the central East European plains during the Epigravettian". Quaternary Research. 90 (3): 457–469. Bibcode:2018QuRes..90..457D. doi:10.1017/qua.2018.40. S2CID 133666996.
  110. ^ N.V. Serdyuk; E.N. Maschenko (2018). "Parasitic diseases of woolly mammoth (Mammuthus primigenius Blumenbach, 1799)" (PDF). Proceedings of the Zoological Institute of the Russian Academy of Sciences. 322 (3): 306–314. doi:10.31610/trudyzin/2018.322.3.306. S2CID 91968871.
  111. ^ José L. Guil-Guerrero; Alexei Tikhonov; Rebeca P. Ramos-Bueno; Semyon Grigoriev; Albert Protopopov; Grigoryi Savvinov; María J. González-Fernández (2018). "Mammoth resources for hominins: from omega-3 fatty acids to cultural objects". Journal of Quaternary Science. 33 (4): 455–463. Bibcode:2018JQS....33..455G. doi:10.1002/jqs.3026. S2CID 134420138.
  112. ^ Eleftheria Palkopoulou; Mark Lipson; Swapan Mallick; Svend Nielsen; Nadin Rohland; Sina Baleka; Emil Karpinski; Atma M. Ivancevic; Thu-Hien To; R. Daniel Kortschak; Joy M. Raison; Zhipeng Qu; Tat-Jun Chin; Kurt W. Alt; Stefan Claesson; Love Dalén; Ross D. E. MacPhee; Harald Meller; Alfred L. Roca; Oliver A. Ryder; David Heiman; Sarah Young; Matthew Breen; Christina Williams; Bronwen L. Aken; Magali Ruffier; Elinor Karlsson; Jeremy Johnson; Federica Di Palma; Jessica Alfoldi; David L. Adelson; Thomas Mailund; Kasper Munch; Kerstin Lindblad-Toh; Michael Hofreiter; Hendrik Poinar; David Reich (2018). "A comprehensive genomic history of extinct and living elephants". Proceedings of the National Academy of Sciences of the United States of America. 115 (11): E2566–E2574. doi:10.1073/pnas.1720554115. PMC 5856550. PMID 29483247.
  113. ^ George Theodorou; Yiannis Bassiakos; Evangelos Tsakalos; Evyenia Yiannouli; Petros Maniatis (2018). "The use of CT scans and 3D modeling as a powerful tool to assist fossil vertebrate taxonomy". In Marinos Ioannides; Eleanor Fink; Raffaella Brumana; Petros Patias; Anastasios Doulamis; João Martins; Manolis Wallace (eds.). Digital heritage. Progress in cultural heritage: documentation, preservation, and protection. 7th International Conference, EuroMed 2018, Nicosia, Cyprus, October 29–November 3, 2018, Proceedings, Part I. Springer. pp. 79–89. doi:10.1007/978-3-030-01762-0_7. ISBN 978-3-030-01761-3.
  114. ^ Athanassios Athanassiou; Alexandra A.E. van der Geer; George A. Lyras (2019). "Pleistocene insular Proboscidea of the Eastern Mediterranean: A review and update". Quaternary Science Reviews. 218: 306–321. Bibcode:2019QSRv..218..306A. doi:10.1016/j.quascirev.2019.06.028. S2CID 199107354.
  115. ^ Martin Pickford (2018). "Tenrecoid mandible from Elisabethfeld (Early Miocene) Namibia" (PDF). Communications of the Geological Survey of Namibia. 18: 87–92.
  116. ^ Ester Díaz-Berenguer; Ainara Badiola; Miguel Moreno-Azanza; José Ignacio Canudo (2018). "First adequately-known quadrupedal sirenian from Eurasia (Eocene, Bay of Biscay, Huesca, northeastern Spain)". Scientific Reports. 8 (1): Article number 5127. Bibcode:2018NatSR...8.5127D. doi:10.1038/s41598-018-23355-w. PMC 5865116. PMID 29572454.
  117. ^ Emmanuel Gheerbrant; Arnaud Schmitt; László Kocsis (2018). "Early African fossils elucidate the origin of embrithopod mammals". Current Biology. 28 (13): 2167–2173.e2. doi:10.1016/j.cub.2018.05.032. PMID 30008332. S2CID 51627140.
  118. ^ Lucila Inés Amador; Norberto Pedro Giannini; Nancy B. Simmons; Virginia Abdala (2018). "Morphology and evolution of sesamoid elements in bats (Mammalia: Chiroptera)". American Museum Novitates (3905): 1–40. doi:10.1206/3905.1. hdl:2246/6905. S2CID 91375855.
  119. ^ Valéria da C. Tavares; Omar M. Warsi; Fernando Balseiro; Carlos A. Mancina; Liliana M. Dávalos (2018). "Out of the Antilles: Fossil phylogenies support reverse colonization of bats to South America". Journal of Biogeography. 45 (4): 859–873. doi:10.1111/jbi.13175.
  120. ^ Kay Van Damme; Petr Benda; Dirk Van Damme; Peter De Geest; Irka Hajdas (2018). "The first vertebrate fossil from Socotra Island (Yemen) is an early Holocene Egyptian fruit bat". Journal of Natural History. 52 (31–32): 2001–2024. doi:10.1080/00222933.2018.1510996. S2CID 92040903.
  121. ^ Matthew F. Jones; Pauline M. C. Coster; Alexis Licht; Grégoire Métais; Faruk Ocakoğlu; Michael H. Taylor; K. Christopher Beard (2018). "A stem bat (Chiroptera: Palaeochiropterygidae) from the late middle Eocene of northern Anatolia: implications for the dispersal and palaeobiology of early bats". Palaeobiodiversity and Palaeoenvironments. 99 (2): 261–269. doi:10.1007/s12549-018-0338-z. S2CID 135184030.
  122. ^ a b c d e Gregg F. Gunnell; Fredrick K. Manthi (2020). "Pliocene bats (Chiroptera) from Kanapoi, Turkana Basin, Kenya". Journal of Human Evolution. 140: Article 102440. doi:10.1016/j.jhevol.2018.01.001. PMID 29628118. S2CID 206143059.
  123. ^ Lars W. Van Den Hoek Ostende; Delia Van Oijen; Stephen K. Donovan (2018). "A new bat record for the late Pleistocene of Jamaica: Pteronotus trevorjacksoni from the Red Hills Road Cave" (PDF). Caribbean Journal of Earth Science. 50: 31–35.
  124. ^ Suzanne J. Hand; Robin M. D. Beck; Michael Archer; Nancy B. Simmons; Gregg F. Gunnell; R. Paul Scofield; Alan J. D. Tennyson; Vanesa L. De Pietri; Steven W. Salisbury; Trevor H. Worthy (2018). "A new, large-bodied omnivorous bat (Noctilionoidea: Mystacinidae) reveals lost morphological and ecological diversity since the Miocene in New Zealand". Scientific Reports. 8 (1): Article number 235. Bibcode:2018NatSR...8..235H. doi:10.1038/s41598-017-18403-w. PMC 5762892. PMID 29321543.
  125. ^ Bin Bai; Yuan-Qing Wang; Qian Li; Hai-Bing Wang; Fang-Yuan Mao; Yan-Xin Gong; Jin Meng (2018). "Biostratigraphy and diversity of Paleogene perissodactyls from the Erlian Basin of Inner Mongolia, China". American Museum Novitates (3914): 1–60. doi:10.1206/3914.1. hdl:2246/6918. S2CID 85524924.
  126. ^ Christine Böhmer; Gertrud E. Rössner (2018). "Dental paleopathology in fossil rhinoceroses: etiology and implications". Journal of Zoology. 304 (1): 3–12. doi:10.1111/jzo.12518.
  127. ^ A. V. Shpansky; G. G. Boeskorov (2018). "Northernmost record of the Merck's rhinoceros Stephanorhinus kirchbergensis (Jäger) and taxonomic status of Coelodonta jacuticus Russanov (Mammalia, Rhinocerotidae)". Paleontological Journal. 52 (4): 445–462. doi:10.1134/S003103011804010X. S2CID 91447285.
  128. ^ Bin Bai; Yuan-Qing Wang; Jin Meng (2018). "Postcranial morphology of Middle Eocene deperetellid Teleolophus (Perissodactyla, Tapiroidea) from Shara Murun region of the Erlian Basin, Nei Mongol, China". Vertebrata PalAsiatica. 56 (3): 193–215. doi:10.19615/j.cnki.1000-3118.171214.
  129. ^ He Chen; Shi-Qi Wang; Da-Wei Tao; Xiu-Min Xia; Shan-Qin Chen; Yan Wu (2018). "Implications for Late Miocene diet from Diceros gansuensis: starch granules in tooth calculus". Vertebrata PalAsiatica. 56 (4): 343–353. doi:10.19615/j.cnki.1000-3118.171124.
  130. ^ Hao‑wen Tong; Xi Chen; Bei Zhang (2018). "New postcranial bones of Elasmotherium peii from Shanshenmiaozui in Nihewan basin, Northern China". Quaternaire. 29 (3): 195–204.
  131. ^ Nikos Solounias; Melinda Danowitz; Elizabeth Stachtiaris; Abhilasha Khurana; Marwan Araim; Marc Sayegh; Jessica Natale (2018). "The evolution and anatomy of the horse manus with an emphasis on digit reduction". Royal Society Open Science. 5 (1): 171782. doi:10.1098/rsos.171782. PMC 5792948. PMID 29410871.
  132. ^ Abigail K. Parker; Brianna K. McHorse; Stephanie E. Pierce (2018). "Niche modeling reveals lack of broad-scale habitat partitioning in extinct horses of North America". Palaeogeography, Palaeoclimatology, Palaeoecology. 511: 103–118. Bibcode:2018PPP...511..103P. doi:10.1016/j.palaeo.2018.07.017. S2CID 134625553.
  133. ^ Boyang Sun; Xiaoxiao Zhang; Yan Liu; Raymond L. Bernor (2018). "Sivalhippus ptychodus and Sivalhippus platyodus (Perissodactyla, Mammalia) from the Late Miocene of China". Rivista Italiana di Paleontologia e Stratigrafia. 124 (1): 1–22. doi:10.13130/2039-4942/9523.
  134. ^ M. Soledad Domingo; Enrique Cantero; Isabel García-Real; Manuel J. Chamorro Sancho; David M. Martín Perea; M. Teresa Alberdi; Jorge Morales (2018). "First radiological study of a complete dental ontogeny sequence of an extinct equid: implications for Equidae life history and taphonomy". Scientific Reports. 8 (1): Article number 8507. Bibcode:2018NatSR...8.8507D. doi:10.1038/s41598-018-26817-3. PMC 5981301. PMID 29855587.
  135. ^ Guillem Orlandi-Oliveras; Carmen Nacarino-Meneses; George D. Koufos; Meike Köhler (2018). "Bone histology provides insights into the life history mechanisms underlying dwarfing in hipparionins". Scientific Reports. 8 (1): Article number 17203. Bibcode:2018NatSR...817203O. doi:10.1038/s41598-018-35347-x. PMC 6249282. PMID 30464210.
  136. ^ Youcef Sam (2018). "Révision des Équidés (Mammalia, Perissodactyla) du site pléistocène moyen du lac Karâr (Tlemcen, Algérie)". Geodiversitas. 40 (8): 171–182. doi:10.5252/geodiversitas2018v40a8. S2CID 134498731.
  137. ^ Víctor Adrián Pérez-Crespo; José Luis Prado; Maria Teresa Alberdi; Joaquín Arroyo-Cabrales (2018). "Stable isotopes and diets of Pleistocene horses from southern North America and South America: similarities and differences". Palaeobiodiversity and Palaeoenvironments. 98 (4): 663–674. doi:10.1007/s12549-018-0330-7. S2CID 134904831.
  138. ^ Michela Leonardi; Francesco Boschin; Konstantinos Giampoudakis; Robert M. Beyer; Mario Krapp; Robin Bendrey; Robert Sommer; Paolo Boscato; Andrea Manica; David Nogues-Bravo; Ludovic Orlando (2018). "Late Quaternary horses in Eurasia in the face of climate and vegetation change". Science Advances. 4 (7): eaar5589. Bibcode:2018SciA....4R5589L. doi:10.1126/sciadv.aar5589. PMC 6059734. PMID 30050986.
  139. ^ Bin Bai; Yuan-Qing Wang; Zhao-Qun Zhang (2018). "The late Eocene hyracodontid perissodactyl Ardynia from Saint Jacques, Inner Mongolia, China and its implications for the potential Eocene-Oligocene boundary". Palaeoworld. 27 (2): 247–257. doi:10.1016/j.palwor.2017.09.001. S2CID 134244589.
  140. ^ Dan-Hui Sun; Yu Li; Tao Deng (2018). "A new species of Chilotherium (Perissodactyla, Rhinocerotidae) from the Late Miocene of Qingyang, Gansu, China". Vertebrata PalAsiatica. 56 (3): 216–228. doi:10.19615/j.cnki.1000-3118.180109.
  141. ^ a b Bin Bai; Yuan-Qing Wang; Jin Meng (2018). "The divergence and dispersal of early perissodactyls as evidenced by early Eocene equids from Asia". Communications Biology. 1: Article number 115. doi:10.1038/s42003-018-0116-5. PMC 6123789. PMID 30271995.
  142. ^ Shuo Li (2018). "A new species of Brontotheriidae from the Middle Eocene of Junggar Basin, Xinjiang, China". Vertebrata PalAsiatica. 56 (1): 25–44. doi:10.19615/j.cnki.1000-3118.170314.
  143. ^ Hai-Bing Wang; Bin Bai; Jin Meng; Yuan-Qing Wang (2018). "A new species of Forstercooperia (Perissodactyla: Paraceratheriidae) from northern China with a systematic revision of forstercooperiines". American Museum Novitates (3897): 1–41. doi:10.1206/3897.1. hdl:2246/6854. S2CID 53067383.
  144. ^ Bo-Yang Sun; Xiu-Xi Wang; Min-Xiao Ji; Li-Bo Pang; Qin-Qin Shi; Su-Kuan Hou; Dan-Hui Sun; Shi-Qi Wang (2018). "Miocene mammalian faunas from Wushan, China and their evolutionary, biochronological, and biogeographic significances". Palaeoworld. 27 (2): 258–270. doi:10.1016/j.palwor.2017.08.001.
  145. ^ Alexander Averianov; Igor Danilov; Wen Chen; Jianhua Jin (2018). "A new brontothere from the Eocene of South China". Acta Palaeontologica Polonica. 63 (1): 189–196. doi:10.4202/app.00431.2017.
  146. ^ Jérémy Tissier; Damien Becker; Vlad Codrea; Loïc Costeur; Cristina Fărcaş; Alexandru Solomon; Marton Venczel; Olivier Maridet (2018). "New data on Amynodontidae (Mammalia, Perissodactyla) from Eastern Europe: Phylogenetic and palaeobiogeographic implications around the Eocene-Oligocene transition". PLOS ONE. 13 (4): e0193774. Bibcode:2018PLoSO..1393774T. doi:10.1371/journal.pone.0193774. PMC 5905962. PMID 29668673.
  147. ^ Raymond L. Bernor; Shiqi Wang; Yan Liu; Yu Chen; Boyang Sun (2018). "Shanxihippus dermatorhinus comb. nov. with comparisons to old world hipparions with specialized nasal apparati". Rivista Italiana di Paleontologia e Stratigrafia. 124 (2): 361–386. doi:10.13130/2039-4942/10202.
  148. ^ Meaghan M. Emery-Wetherell; Edward Byrd Davis (2018). "Dental measurements do not diagnose modern artiodactyl species: Implications for the systematics of Merycoidodontoidea". Palaeontologia Electronica. 21 (2): Article number 21.2.23A. doi:10.26879/748.
  149. ^ Pietro Martini; Denis Geraads (2018). "Camelus thomasi Pomel, 1893 from the Pleistocene type-locality Tighennif (Algeria). Comparisons with modern Camelus". Geodiversitas. 40 (5): 115–134. doi:10.5252/geodiversitas2018v40a5. S2CID 133952148.
  150. ^ Jennifer L. Bradham; Larisa R.G. DeSantis; Maria Luisa S.P. Jorge; Alexine Keuroghlian (2018). "Dietary variability of extinct tayassuids and modern white-lipped peccaries (Tayassu pecari) as inferred from dental microwear and stable isotope analysis". Palaeogeography, Palaeoclimatology, Palaeoecology. 499: 93–101. Bibcode:2018PPP...499...93B. doi:10.1016/j.palaeo.2018.03.020. S2CID 134099913.
  151. ^ Evan M. Doughty; Steven C. Wallace; Blaine W. Schubert; Lauren M. Lyon (2018). "First occurrence of the enigmatic peccaries Mylohyus elmorei and Prosthennops serus from the Appalachians: latest Hemphillian to Early Blancan of Gray Fossil Site, Tennessee". PeerJ. 6: e5926. doi:10.7717/peerj.5926. PMC 6276594. PMID 30533292.
  152. ^ Ignacio A. Lazagabaster; Juliet Brophy; Oscar Sanisidro; Silvia Pineda-Munoz; Lee Berger (2018). "A new partial cranium of Metridiochoerus (Suidae, Mammalia) from Malapa, South Africa". Journal of African Earth Sciences. 145: 49–52. Bibcode:2018JAfES.145...49L. doi:10.1016/j.jafrearsci.2018.05.005. S2CID 135440980.
  153. ^ Marco Cherin; Leonardo Sorbelli; Marco Crotti; Dawid A. Iurino; Raffaele Sardella; Antoine Souron (2018). "New material of Sus strozzii (Suidae, Mammalia) from the Early Pleistocene of Italy and a phylogenetic analysis of suines". Quaternary Science Reviews. 194: 94–115. Bibcode:2018QSRv..194...94C. doi:10.1016/j.quascirev.2018.06.029. S2CID 134212868.
  154. ^ Olja Toljagić; Kjetil L. Voje; Michael Matschiner; Lee Hsiang Liow; Thomas F. Hansen (2018). "Millions of years behind: Slow adaptation of ruminants to grasslands". Systematic Biology. 67 (1): 145–157. doi:10.1093/sysbio/syx059. PMID 28637223. S2CID 205327041.
  155. ^ Mariana F. Rossi; Beatriz Mello; Carlos G. Schrago (2018). "Comparative evaluation of macroevolutionary regimes of Ruminantia and selected mammalian lineages". Biological Journal of the Linnean Society. 123 (4): 814–824. doi:10.1093/biolinnean/bly009.
  156. ^ Bastien Mennecart; Adrien de Perthuis; Gertrud E. Rössner; Jonathan A. Guzmán; Aude de Perthuis; Loïc Costeur (2018). "The first French tragulid skull (Mammalia, Ruminantia, Tragulidae) and associated tragulid remains from the Middle Miocene of Contres (Loir-et-Cher, France)". Comptes Rendus Palevol. 17 (3): 189–200. doi:10.1016/j.crpv.2017.08.004.
  157. ^ Roman Croitor; Montserrat Sanz; Joan Daura (2018). "The endemic deer Haploidoceros mediterraneus (Bonifay) (Cervidae, Mammalia) from the Late Pleistocene of Cova del Rinoceront (Iberian Peninsula): origin, ecomorphology, and paleobiology". Historical Biology: An International Journal of Paleobiology. 32 (3): 409–427. doi:10.1080/08912963.2018.1499018. S2CID 92318533.
  158. ^ Alline Rotti; Dimila Mothé; Leonardo dos Santos Avilla; Gina M. Semprebon (2018). "Diet reconstruction for an extinct deer (Cervidae: Cetartiodactyla) from the Quaternary of South America". Palaeogeography, Palaeoclimatology, Palaeoecology. 497: 244–252. Bibcode:2018PPP...497..244R. doi:10.1016/j.palaeo.2018.02.026.
  159. ^ Émilie Berlioz; Dimitris S. Kostopoulos; Cécile Blondel; Gildas Merceron (2018). "Feeding ecology of Eucladoceros ctenoides as a proxy to track regional environmental variations in Europe during the early Pleistocene". Comptes Rendus Palevol. 17 (4–5): 320–332. doi:10.1016/j.crpv.2017.07.002.
  160. ^ Roman Croitor; Theodor Obada (2018). "On the presence of Late Pleistocene wapiti, Cervus canadensis Erxleben, 1777 (Cervidae, Mammalia) in the Palaeolithic site Climăuți II (Moldova)". Contributions to Zoology. 87 (1): 1–10. doi:10.1163/18759866-08701001.
  161. ^ Thekla Pfeiffer-Deml (2018). "The fossil fallow deer Dama geiselana (Cervidae, Mammalia, upgrade to species level) in the context of migration and local extinctions of fallow deer in the Late and Middle Pleistocene in Europe". PalZ. 92 (4): 681–713. doi:10.1007/s12542-018-0417-5. S2CID 134410898.
  162. ^ B. van Geel; J. Sevink; D. Mol; B. W. Langeveld; R. W. J. M. van der Ham; C. J. M. van der Kraan; J. van der Plicht; J. S. Haile; A. Rey-Iglesia; E. D. Lorenzen (2018). "Giant deer (Megaloceros giganteus) diet from Mid-Weichselian deposits under the present North Sea inferred from molar-embedded botanical remains" (PDF). Journal of Quaternary Science. 33 (8): 924–933. Bibcode:2018JQS....33..924V. doi:10.1002/jqs.3069. S2CID 134292692.
  163. ^ Israel M. Sánchez; Jorge Morales; Juan López Cantalapiedra; Victoria Quiralte; Martin Pickford (2018). "Propalaeoryx Stromer 1926 (Ruminantia, Pecora, Giraffomorpha) revisited: systematics and phylogeny of an African palaeomerycoid" (PDF). Communications of the Geological Survey of Namibia. 19: 123–131.
  164. ^ Gildas Merceron; Marc Colyn; Denis Geraads (2018). "Browsing and non-browsing extant and extinct giraffids: Evidence from dental microwear textural analysis" (PDF). Palaeogeography, Palaeoclimatology, Palaeoecology. 505: 128–139. Bibcode:2018PPP...505..128M. doi:10.1016/j.palaeo.2018.05.036. S2CID 73647428.
  165. ^ Charles Helm; Hayley Cawthra; Richard Cowling; Jan De Vynck; Curtis Marean; Richard McCrea; Renee Rust (2018). "Palaeoecology of giraffe tracks in Late Pleistocene aeolianites on the Cape south coast". South African Journal of Science. 114 (1/2): 67–74. doi:10.17159/sajs.2018/20170266.
  166. ^ Ismael Ferrusquía-Villafranca; Víctor Adrián Pérez-Crespo; José E. Ruiz-González; Enrique Martínez-Hernández; Pedro Morales-Puente (2018). "The diet of Leptomeryx sp. from the Late Eocene Yolomécatl Formation, NW Oaxaca, Sierra Madre del Sur Morphotectonic Province, SE México and its palaeoecological significance". Geological Magazine. 155 (1): 203–208. Bibcode:2018GeoM..155..203F. doi:10.1017/S0016756817000747. S2CID 134925122.
  167. ^ Cécile Blondel; John Rowan; Gildas Merceron; Faysal Bibi; Enquye Negash; W. Andrew Barr; Jean-Renaud Boisserie (2018). "Feeding ecology of Tragelaphini (Bovidae) from the Shungura Formation, Omo Valley, Ethiopia: Contribution of dental wear analyses". Palaeogeography, Palaeoclimatology, Palaeoecology. 496: 103–120. Bibcode:2018PPP...496..103B. doi:10.1016/j.palaeo.2018.01.027.
  168. ^ Yikun Li; Qinqin Shi; Shaokun Chen; Tao Deng (2018). ""Gazella" (Mammalia: Bovidae) from the late Miocene Qingyang area, Gansu, China". Palaeontologia Electronica. 21 (2): Article number 21.2.24A. doi:10.26879/838.
  169. ^ Michaela Ecker; Julia A. Lee-Thorp (2018). "The dietary ecology of the extinct springbok Antidorcas bondi". Quaternary International. 495: 136–143. Bibcode:2018QuInt.495..136E. doi:10.1016/j.quaint.2018.09.012. S2CID 134723289.
  170. ^ Jeff M. Martin; Jim I. Mead; Perry S. Barboza (2018). "Bison body size and climate change". Ecology and Evolution. 8 (9): 4564–4574. doi:10.1002/ece3.4019. PMC 5938452. PMID 29760897.
  171. ^ Roberto Díaz-Sibaja; Eduardo Jiménez-Hidalgo; Javier Ponce-Saavedra; María Luisa García-Zepeda (2018). "A combined mesowear analysis of Mexican Bison antiquus shows a generalist diet with geographical variation". Journal of Paleontology. 92 (6): 1130–1139. doi:10.1017/jpa.2018.19. S2CID 134956451.
  172. ^ Frances L. Forrest; Thomas W. Plummer; Ryan L. Raaum (2018). "Ecomorphological analysis of bovid mandibles from Laetoli Tanzania using 3D geometric morphometrics: Implications for hominin paleoenvironmental reconstruction". Journal of Human Evolution. 114: 20–34. doi:10.1016/j.jhevol.2017.09.010. PMID 29447759.
  173. ^ Laurent A. F. Frantz; Anna Rudzinski; Abang Mansyursyah Surya Nugraha; Allowen Evin; James Burton; Ardern Hulme-Beaman; Anna Linderholm; Ross Barnett; Rodrigo Vega; Evan K. Irving-Pease; James Haile; Richard Allen; Kristin Leus; Jill Shephard; Mia Hillyer; Sarah Gillemot; Jeroen van den Hurk; Sharron Ogle; Cristina Atofanei; Mark G. Thomas; Friederike Johansson; Abdul Haris Mustari; John Williams; Kusdiantoro Mohamad; Chandramaya Siska Damayanti; Ita Djuwita Wiryadi; Dagmar Obbles; Stephano Mona; Hally Day; Muhammad Yasin; Stefan Meker; Jimmy A. McGuire; Ben J. Evans; Thomas von Rintelen; Simon Y. W. Ho; Jeremy B. Searle; Andrew C. Kitchener; Alastair A. Macdonald; Darren J. Shaw; Robert Hall; Peter Galbusera; Greger Larson (2018). "Synchronous diversification of Sulawesi's iconic artiodactyls driven by recent geological events". Proceedings of the Royal Society B: Biological Sciences. 285 (1876): 20172566. doi:10.1098/rspb.2017.2566. PMC 5904307. PMID 29643207.
  174. ^ a b c d e Marc Godinot; Henri-Pierre Labarrère; Jorg Erfurt; Jens L. Franzen; Brigitte Lange-Badré; France de Lapparent de Broin; Dominique Vidalenc (2018). "Un nouveau gisement à vertébrés éocènes, Rouzilhac (MP 10-11), dans la série molassique d'Issel (Aude, France)". Revue de Paléobiologie, Genève. 37 (1): 141–333.
  175. ^ Bastien Mennecart; Denis Geraads; Nikolai Spassov; Ivan Zagorchev (2018). "Discovery of the oldest European ruminant in the latest Eocene of Bulgaria: Did tectonics influence the diachronic development of the Grande Coupure?" (PDF). Palaeogeography, Palaeoclimatology, Palaeoecology. 498: 1–8. Bibcode:2018PPP...498....1M. doi:10.1016/j.palaeo.2018.01.011. S2CID 134845249.
  176. ^ Bastien Mennecart; Predrag Radović; Zoran Marković (2018). "New data on the earliest European ruminant (Mammalia, Artiodactyla): A revision of the fossil mandible from Rusce in the Pčinja basin (late Eocene, Southeastern Serbia)". Palaeontologia Electronica. 21 (3): Article number 21.3.38. doi:10.26879/883.
  177. ^ a b c Alexandra A.E. van der Geer (2018). "Uniformity in variety: Antler morphology and evolution in a predator-free environment". Palaeontologia Electronica. 21 (1): 1–31. doi:10.26879/834.
  178. ^ Israel M. Sánchez; Jorge Morales; Juan López Cantalapiedra; Victoria Quiralte; Martin Pickford (2018). "Preliminary phylogenetic analysis of the Tragulidae (Mammalia, Cetartiodactyla, Ruminantia) from Arrisdrift: implications for the African Miocene tragulids" (PDF). Communications of the Geological Survey of Namibia. 19: 110–122.
  179. ^ Martin Pickford; Jorge Morales (2018). "A new suoid with tubulidentate, hypselorhizic cheek teeth from the early Miocene of Córcoles, Spain". Spanish Journal of Palaeontology. 33 (2): 321–344. doi:10.7203/sjp.33.2.13606.
  180. ^ Laureline Scherler; Fabrice Lihoreau; Damien Becker (2018). "To split or not to split Anthracotherium? A phylogeny of Anthracotheriinae (Cetartiodactyla: Hippopotamoidea) and its palaeobiogeographical implications" (PDF). Zoological Journal of the Linnean Society. 185 (2): 487–510. doi:10.1093/zoolinnean/zly052.
  181. ^ a b Roman Croitor (2018). "A description of two new species of the genus Rucervus (Cervidae, Mammalia) from the Early Pleistocene of Southeast Europe, with comments on hominin and South Asian ruminants dispersals". Quaternary. 1 (2): Article 17. doi:10.3390/quat1020017.
  182. ^ Dimitris S. Kostopoulos; Juliette Soubise (2018). "Palaeoreas, Majoreas, and Stryfnotherium gen. nov. (Mammalia: Artiodactyla: Bovidae) from the Late Miocene of Greece". Annales de Paléontologie. 104 (3): 231–247. doi:10.1016/j.annpal.2018.04.002. S2CID 134290724.
  183. ^ Ryan M. Bebej; Kathlyn M. Smith (2018). "Lumbar mobility in archaeocetes (Mammalia: Cetacea) and the evolution of aquatic locomotion in the earliest whales". Zoological Journal of the Linnean Society. 182 (3): 695–721. doi:10.1093/zoolinnean/zlx058.
  184. ^ Mickaël J. Mourlam; Maeva J. Orliac (2018). "Protocetid (Cetacea, Artiodactyla) bullae and petrosals from the middle Eocene locality of Kpogamé, Togo: new insights into the early history of cetacean hearing". Journal of Systematic Palaeontology. 16 (8): 621–644. doi:10.1080/14772019.2017.1328378. S2CID 89774296.
  185. ^ Carlos Mauricio Peredo; Julio S. Peredo; Nicholas D. Pyenson (2018). "Convergence on dental simplification in the evolution of whales". Paleobiology. 44 (3): 434–443. doi:10.1017/pab.2018.9. S2CID 90581461.
  186. ^ Morgan Churchill; Jonathan H. Geisler; Brian L. Beatty; Anjali Goswami (2018). "Evolution of cranial telescoping in echolocating whales (Cetacea: Odontoceti)". Evolution. 72 (5): 1092–1108. doi:10.1111/evo.13480. PMID 29624668. S2CID 4656605.
  187. ^ Loïc Costeur; Camille Grohé; Gabriel Aguirre-Fernández; Eric Ekdale; Georg Schulz; Bert Müller; Bastien Mennecart (2018). "The bony labyrinth of toothed whales reflects both phylogeny and habitat preferences". Scientific Reports. 8 (1): Article number 7841. Bibcode:2018NatSR...8.7841C. doi:10.1038/s41598-018-26094-0. PMC 5959912. PMID 29777194.
  188. ^ Robert W. Boessenecker; Jonathan H. Geisler (2018). "New records of the archaic dolphin Agorophius (Mammalia: Cetacea) from the upper Oligocene Chandler Bridge Formation of South Carolina, USA". PeerJ. 6: e5290. doi:10.7717/peerj.5290. PMC 6166619. PMID 30280011.
  189. ^ K. N. Gilbert; L. C. Ivany; M. D. Uhen (2018). "Living fast and dying young: Life history and ecology of a Neogene sperm whale". Journal of Vertebrate Paleontology. 38 (2): e1439038. doi:10.1080/02724634.2018.1439038. S2CID 89750852.
  190. ^ Benjamin Ramassamy; Olivier Lambert; Alberto Collareta; Mario Urbina; Giovanni Bianucci (2018). "Description of the skeleton of the fossil beaked whale Messapicetus gregarius: searching potential proxies for deep-diving abilities". Fossil Record. 21 (1): 11–32. doi:10.5194/fr-21-11-2018.
  191. ^ R. Ewan Fordyce; Felix G. Marx (2018). "Gigantism precedes filter feeding in baleen whale evolution". Current Biology. 28 (10): 1670–1676.e2. doi:10.1016/j.cub.2018.04.027. PMID 29754903. S2CID 21680283.
  192. ^ K. K. Tarasenko; E. S. Kovalenko; A. A. Kaloyan; K. M. Podurets (2018). "Morphology of the petrosal in Late Miocene baleen whales of northwestern Ciscaucasia". Paleontological Journal. 52 (12): 1440–1444. doi:10.1134/S0031030118120195. S2CID 91551353.
  193. ^ Yoshihiro Tanaka; Mahito Watanabe (2018). "Geologically old and ontogenetically young Herpetocetus sp. from the late Miocene of Hokkaido, Japan". Journal of Vertebrate Paleontology. 38 (4): (1)–(11). doi:10.1080/02724634.2018.1478842. S2CID 92314005.
  194. ^ Felix G. Marx; Travis Park; Erich M.G. Fitzgerald; Alistair R. Evans (2018). "A Miocene pygmy right whale fossil from Australia". PeerJ. 6: e5025. doi:10.7717/peerj.5025. PMC 6016540. PMID 29942692.
  195. ^ Indira S. Ritsche; Julia M. Fahlke; Frank Wieder; André Hilger; Ingo Manke; Oliver Hampe (2018). "Relationships of cochlear coiling shape and hearing frequencies in cetaceans, and the occurrence of infrasonic hearing in Miocene Mysticeti". Fossil Record. 21 (1): 33–45. doi:10.5194/fr-21-33-2018.
  196. ^ Alberto Collareta; Eleonora Regattieri; Giovanni Zanchetta; Olivier Lambert; Rita Catanzariti; Mark Bosselaers; Pablo Covelo; Angelo Varola; Giovanni Bianucci (2018). "New insights on ancient cetacean movement patterns from oxygenisotope analyses of a Mediterranean Pleistocene whale barnacle". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 288 (2): 143–159. doi:10.1127/njgpa/2018/0729.
  197. ^ Mariana Viglino; Mónica R. Buono; Carolina S. Gutstein; Mario A. Cozzuol; José I. Cuitiño (2018). "A new dolphin from the early Miocene of Patagonia, Argentina: Insights into the evolution of Platanistoidea in the Southern Hemisphere". Acta Palaeontologica Polonica. 63 (2): 261–277. doi:10.4202/app.00441.2017.
  198. ^ Pavel Gol'din (2018). "New Paratethyan dwarf baleen whales mark the origin of cetotheres". PeerJ. 6: e5800. doi:10.7717/peerj.5800. PMC 6193469. PMID 30356949.
  199. ^ L. Barry Albright III; Albert E. Sanders; Jonathan H. Geisler (2018). "An unexpectedly derived odontocete from the Ashley Formation (Upper Rupelian) of South Carolina, U.S.A.". Journal of Vertebrate Paleontology. 38 (4): (1)–(15). doi:10.1080/02724634.2018.1482555. S2CID 92830510.
  200. ^ Toshiyuki Kimura; Yoshikazu Hasegawa; Naoki Kohno (2018). "A new species of the genus Eschrichtius (Cetacea: Mysticeti) from the Early Pleistocene of Japan". Paleontological Research. 22 (1): 1–19. doi:10.2517/2017PR007. S2CID 134494152.
  201. ^ Hiroto Ichishima; Hitoshi Furusawa; Makino Tachibana; Masaichi Kimura (2018). "First monodontid cetacean (Odontoceti, Delphinoidea) from the early Pliocene of the north-western Pacific Ocean". Papers in Palaeontology. 5 (2): 323–342. doi:10.1002/spp2.1244. S2CID 134689324.
  202. ^ Olivier Lambert; Christian de Muizon; Guy Duhamel; Johannes van der Plicht (2018). "Neogene and Quaternary fossil remains of beaked whales (Cetacea, Odontoceti, Ziphiidae) from deep-sea deposits off Crozet and Kerguelen islands, Southern Ocean". Geodiversitas. 40 (6): 135–160. doi:10.5252/geodiversitas2018v40a6. S2CID 134559343.
  203. ^ Olivier Lambert; Camille Auclair; Cirilo Cauxeiro; Michel Lopez; Sylvain Adnet (2018). "A close relative of the Amazon river dolphin in marine deposits: a new Iniidae from the late Miocene of Angola". PeerJ. 6: e5556. doi:10.7717/peerj.5556. PMC 6139015. PMID 30225172.
  204. ^ Giovanni Bianucci; Giulia Bosio; Elisa Malinverno; Christian de Muizon; Igor M. Villa; Mario Urbina; Olivier Lambert (2018). "A new large squalodelphinid (Cetacea, Odontoceti) from Peru sheds light on the Early Miocene platanistoid disparity and ecology". Royal Society Open Science. 5 (4): 172302. Bibcode:2018RSOS....572302B. doi:10.1098/rsos.172302. PMC 5936943. PMID 29765678.
  205. ^ Carlos Mauricio Peredo; Nicholas D. Pyenson; Christopher D. Marshall; Mark D. Uhen (2018). "Tooth loss precedes the origin of baleen in whales". Current Biology. 28 (24): 3992–4000.e2. doi:10.1016/j.cub.2018.10.047. PMID 30503622. S2CID 54145119.
  206. ^ Carlos Mauricio Peredo; Nicholas D. Pyenson (2018). "Salishicetus meadi, a new aetiocetid from the late Oligocene of Washington State and implications for feeding transitions in early mysticete evolution". Royal Society Open Science. 5 (4): 172336. Bibcode:2018RSOS....572336P. doi:10.1098/rsos.172336. PMC 5936946. PMID 29765681.
  207. ^ Yoshihiro Tanaka; Tatsuro Ando; Hiroshi Sawamura (2018). "A new species of Middle Miocene baleen whale from the Nupinai Group, Hikatagawa Formation of Hokkaido, Japan". PeerJ. 6: e4934. doi:10.7717/peerj.4934. PMC 6025157. PMID 29967715.
  208. ^ Atzcalli Ehécatl Hernández Cisneros (2018). "A new group of late Oligocene mysticetes from México". Palaeontologia Electronica. 21 (1): 1–30. doi:10.26879/746.
  209. ^ Cheng-Hsiu Tsai; R. Ewan Fordyce (2018). "A new archaic baleen whale Toipahautea waitaki (early Late Oligocene, New Zealand) and the origins of crown Mysticeti". Royal Society Open Science. 5 (4): 172453. Bibcode:2018RSOS....572453T. doi:10.1098/rsos.172453. PMC 5936954. PMID 29765689.
  210. ^ Carlos Mauricio Peredo; Mark D. Uhen; Margot D. Nelson (2018). "A new kentriodontid (Cetacea: Odontoceti) from the early Miocene Astoria Formation and a revision of the stem delphinidan family Kentriodontidae". Journal of Vertebrate Paleontology. 38 (2): e1411357. doi:10.1080/02724634.2017.1411357. S2CID 89965454.
  211. ^ Mairin Balisi; Xiaoming Wang; Julia Sankey; Jacob Biewer; Dennis Garber (2018). "Fossil canids from the Mehrten Formation, Late Cenozoic of Northern California". Journal of Vertebrate Paleontology. 38 (1): e1405009. doi:10.1080/02724634.2017.1405009. S2CID 90160835.
  212. ^ Mairin Balisi; Corinna Casey; Blaire Van Valkenburgh (2018). "Dietary specialization is linked to reduced species durations in North American fossil canids". Royal Society Open Science. 5 (4): 171861. Bibcode:2018RSOS....571861B. doi:10.1098/rsos.171861. PMC 5936914. PMID 29765649.
  213. ^ Brian P. Tanis; Larisa R.G. DeSantis; Rebecca C. Terry (2018). "Dental microwear textures across cheek teeth in canids: Implications for dietary studies of extant and extinct canids". Palaeogeography, Palaeoclimatology, Palaeoecology. 508: 129–138. Bibcode:2018PPP...508..129T. doi:10.1016/j.palaeo.2018.07.028. S2CID 134532042.
  214. ^ Xiaoming Wang; Stuart C. White; Mairin Balisi; Jacob Biewer; Julia Sankey; Dennis Garber; Z. Jack Tseng (2018). "First bone-cracking dog coprolites provide new insight into bone consumption in Borophagus and their unique ecological niche". eLife. 7: e34773. doi:10.7554/eLife.34773. PMC 5963924. PMID 29785931.
  215. ^ Alexandra A.E. van der Geer; George A. Lyras; Rebekka Volmer (2018). "Insular dwarfism in canids on Java (Indonesia) and its implication for the environment of Homo erectus during the Early and earliest Middle Pleistocene". Palaeogeography, Palaeoclimatology, Palaeoecology. 507: 168–179. Bibcode:2018PPP...507..168V. doi:10.1016/j.palaeo.2018.07.009. S2CID 134585999.
  216. ^ Jan Zrzavý; Pavel Duda; Jan Robovský; Isabela Okřinová; Věra Pavelková Řičánková (2018). "Phylogeny of the Caninae (Carnivora): Combining morphology, behaviour, genes and fossils". Zoologica Scripta. 47 (4): 373–389. doi:10.1111/zsc.12293. S2CID 90592618.
  217. ^ Saverio Bartolini Lucenti; Lorenzo Rook; Jorge Morales (2018). "Nyctereutes (Mammalia, Carnivora, Canidae) from Layna and the Eurasian raccoon-dogs: an updated revision". Rivista Italiana di Paleontologia e Stratigrafia. 124 (3): 597–616. doi:10.13130/2039-4942/10739.
  218. ^ Tom McCann; Irmgard Amaru; Effi-Laura Drews; Thanushika Gunatilake; Christina Johanna Knauf; Friedrich Rick; Darius Roohnikan; Robin Maximilian Schaumann; Simone Tillmann (2018). "The hunter and the hunted – first description of a jackal-like predator and associated bird and gazelle tracks from the Post-Messinian of the Sorbas Basin, SE Spain". Zeitschrift der Deutschen Gesellschaft für Geowissenschaften. 169 (1): 47–71. doi:10.1127/zdgg/2018/0131.
  219. ^ Qigao Jiangzuo; Jinyi Liu; Jan Wagner; Wei Dong; Jin Chen (2018). "Taxonomical revision of fossil Canis in Middle Pleistocene sites of Zhoukoudian, Beijing, China and a review of fossil records of Canis mosbachensis variabilis in China". Quaternary International. 482: 93–108. Bibcode:2018QuInt.482...93J. doi:10.1016/j.quaint.2018.04.003. S2CID 134288431.
  220. ^ Susumu Tomiya; Julie A. Meachen (2018). "Postcranial diversity and recent ecomorphic impoverishment of North American gray wolves". Biology Letters. 14 (1): 20170613. doi:10.1098/rsbl.2017.0613. PMC 5803591. PMID 29343558.
  221. ^ Beniamino Mecozzi; Saverio Bartolini Lucenti (2018). "The Late Pleistocene Canis lupus (Canidae, Mammalia) from Avetrana (Apulia, Italy): reappraisal and new insights on the European glacial wolves". Italian Journal of Geosciences. 137 (1): 138–150. doi:10.3301/IJG.2017.22.
  222. ^ Máire Ní Leathlobhair; Angela R. Perri; Evan K. Irving-Pease; Kelsey E. Witt; Anna Linderholm; James Haile; Ophelie Lebrasseur; Carly Ameen; Jeffrey Blick; Adam R. Boyko; Selina Brace; Yahaira Nunes Cortes; Susan J. Crockford; Alison Devault; Evangelos A. Dimopoulos; Morley Eldridge; Jacob Enk; Shyam Gopalakrishnan; Kevin Gori; Vaughan Grimes; Eric Guiry; Anders J. Hansen; Ardern Hulme-Beaman; John Johnson; Andrew Kitchen; Aleksei K. Kasparov; Young-Mi Kwon; Pavel A. Nikolskiy; Carlos Peraza Lope; Aurélie Manin; Terrance Martin; Michael Meyer; Kelsey Noack Myers; Mark Omura; Jean-Marie Rouillard; Elena Y. Pavlova; Paul Sciulli; Mikkel-Holger S. Sinding; Andrea Strakova; Varvara V. Ivanova; Christopher Widga; Eske Willerslev; Vladimir V. Pitulko; Ian Barnes; M. Thomas P. Gilbert; Keith M. Dobney; Ripan S. Malhi; Elizabeth P. Murchison; Greger Larson; Laurent A. F. Frantz (2018). "The evolutionary history of dogs in the Americas" (PDF). Science. 361 (6397): 81–85. Bibcode:2018Sci...361...81N. doi:10.1126/science.aao4776. PMC 7116273. PMID 29976825. S2CID 206663458.
  223. ^ Morgane Ollivier; Anne Tresset; Laurent A. F. Frantz; Stéphanie Bréhard; Adrian Bălăşescu; Marjan Mashkour; Adina Boroneanţ; Maud Pionnier-Capitan; Ophélie Lebrasseur; Rose-Marie Arbogast; László Bartosiewicz; Karyne Debue; Rivka Rabinovich; Mikhail V. Sablin; Greger Larson; Catherine Hänni; Christophe Hitte; Jean-Denis Vigne (2018). "Dogs accompanied humans during the Neolithic expansion into Europe". Biology Letters. 14 (10): 20180286. doi:10.1098/rsbl.2018.0286. PMC 6227856. PMID 30333260.
  224. ^ Jane Balme; Sue O'Connor; Stewart Fallon (2018). "New dates on dingo bones from Madura Cave provide oldest firm evidence for arrival of the species in Australia". Scientific Reports. 8 (1): Article number 9933. Bibcode:2018NatSR...8.9933B. doi:10.1038/s41598-018-28324-x. PMC 6053400. PMID 30026564.
  225. ^ Albert Min-Shan Ko; Yingqi Zhang; Melinda A. Yang; Yibo Hu; Peng Cao; Xiaotian Feng; Lizhao Zhang; Fuwen Wei; Qiaomei Fu (2018). "Mitochondrial genome of a 22,000-year-old giant panda from southern China reveals a new panda lineage". Current Biology. 28 (12): R693–R694. doi:10.1016/j.cub.2018.05.008. PMID 29920259. S2CID 49310493.
  226. ^ Martina L. Steffen; Tara L. Fulton (2018). "On the association of giant short-faced bear (Arctodus simus) and brown bear (Ursus arctos) in late Pleistocene North America". Geobios. 51 (1): 61–74. doi:10.1016/j.geobios.2017.12.001.
  227. ^ Dariusz Nowakowski (2018). "Frequency of appearance of transverse (Harris) lines reflects living conditions of the Pleistocene bear—Ursus ingressus—(Sudety Mts., Poland)". PLOS ONE. 13 (4): e0196342. Bibcode:2018PLoSO..1396342N. doi:10.1371/journal.pone.0196342. PMC 5912778. PMID 29684086.
  228. ^ Marius Robu; Jonathan G. Wynn; Ionuţ C. Mirea; Alexandru Petculescu; Marius Kenesz; Cristina M. Puşcaş; Marius Vlaicu; Erik Trinkaus; Silviu Constantin (2018). "The diverse dietary profiles of MIS 3 cave bears from the Romanian Carpathians: insights from stable isotope (δ13C and δ15N) analysis". Palaeontology. 61 (2): 209–219. doi:10.1111/pala.12338.
  229. ^ Axel Barlow; James A. Cahill; Stefanie Hartmann; Christoph Theunert; Georgios Xenikoudakis; Gloria G. Fortes; Johanna L. A. Paijmans; Gernot Rabeder; Christine Frischauf; Aurora Grandal-d'Anglade; Ana García-Vázquez; Marine Murtskhvaladze; Urmas Saarma; Peeter Anijalg; Tomaž Skrbinšek; Giorgio Bertorelle; Boris Gasparian; Guy Bar-Oz; Ron Pinhasi; Montgomery Slatkin; Love Dalén; Beth Shapiro; Michael Hofreiter (2018). "Partial genomic survival of cave bears in living brown bears". Nature Ecology & Evolution. 2 (10): 1563–1570. doi:10.1038/s41559-018-0654-8. PMC 6590514. PMID 30150744.
  230. ^ Qigao Jiangzuo; Jan Wagner; Jin Chen; Cuiping Dong; Jianhua Wei; Juan Ning; Jinyi Liu (2018). "Presence of the Middle Pleistocene cave bears in China confirmed – Evidence from Zhoukoudian area". Quaternary Science Reviews. 199: 1–17. Bibcode:2018QSRv..199....1J. doi:10.1016/j.quascirev.2018.09.012. S2CID 134647125.
  231. ^ Kristof Veitschegger; Christian Kolb; Eli Amson; Torsten M. Scheyer; Marcelo R. Sánchez-Villagra (2018). "Palaeohistology and life history evolution in cave bears, Ursus spelaeus sensu lato". PLOS ONE. 13 (11): e0206791. Bibcode:2018PLoSO..1306791V. doi:10.1371/journal.pone.0206791. PMC 6248942. PMID 30462690.
  232. ^ Gennady F. Baryshnikov; Andrei Yu. Puzachenko; Svetlana V. Baryshnikova (2018). "Morphometric analyses of cave bear mandibles (Carnivora, Ursidae)". Revue de Paléobiologie, Genève. 37 (2): 379–393.
  233. ^ Chris J. Law; Graham J. Slater; Rita S. Mehta (2018). "Lineage diversity and size disparity in Musteloidea: Testing patterns of adaptive radiation using molecular and fossil-based methods". Systematic Biology. 67 (1): 127–144. doi:10.1093/sysbio/syx047. PMID 28472434. S2CID 3564396.
  234. ^ Juliana Tarquini; Néstor Toledo; Leopoldo H. Soibelzon; Cecilia C. Morgan (2018). "Body mass estimation for †Cyonasua (Procyonidae, Carnivora) and related taxa based on postcranial skeleton". Historical Biology: An International Journal of Paleobiology. 30 (4): 496–506. doi:10.1080/08912963.2017.1295042. S2CID 90408657.
  235. ^ Damián Ruiz-Ramoni; Ascanio Rincón; Marisol Montellano-Ballesteros (2018). "Evidencias del origen de Nasua y Procyon (Procyonidae: Carnivora) en América del Sur". Revista Brasileira de Paleontologia. 21 (1): 87–94. doi:10.4072/rbp.2018.1.07.
  236. ^ Jonathan J. Calede; Winifred A. Kehl; Edward B. Davis (2018). "Craniodental morphology and diet of Leptarctus oregonensis (Mammalia, Carnivora, Mustelidae) from the Mascall Formation (Miocene) of central Oregon". Journal of Paleontology. 92 (2): 289–304. doi:10.1017/jpa.2017.78. S2CID 89876488.
  237. ^ A. V. Lavrov; K. K. Tarasenko; A. N. Vlasenko (2018). "Semantor macrurus Orlov, 1931 (Carnivora, Mustelidae): morphology of the hind limb and a new view on its paleobiology". Paleontological Journal. 52 (13): 1637–1646. doi:10.1134/S0031030118130087. S2CID 91618237.
  238. ^ Alberto Valenciano; Juan Abella; David M. Alba; Josep M. Robles; María A. Álvarez-Sierra; Jorge Morales (2018). "New early Miocene material of Iberictis, the oldest member of the wolverine lineage (Carnivora, Mustelidae, Guloninae)". Journal of Mammalian Evolution. 27 (1): 73–93. doi:10.1007/s10914-018-9445-x. S2CID 51891587.
  239. ^ Robert W. Boessenecker (2018). "A Middle Pleistocene Sea Otter from Northern California and the Antiquity of Enhydra in the Pacific Basin". Journal of Mammalian Evolution. 25 (1): 27–35. doi:10.1007/s10914-016-9373-6. S2CID 46794472.
  240. ^ Ashley W. Poust; Robert W. Boessenecker (2018). "Expanding the geographic and geochronologic range of early pinnipeds: New specimens of Enaliarctos from Northern California and Oregon". Acta Palaeontologica Polonica. 63 (1): 25–40. doi:10.4202/app.00399.2017.
  241. ^ David P. Hocking; Felix G. Marx; Renae Sattler; Robert N. Harris; Tahlia I. Pollock; Karina J. Sorrell; Erich M. G. Fitzgerald; Matthew R. McCurry; Alistair R. Evans (2018). "Clawed forelimbs allow northern seals to eat like their ancient ancestors". Royal Society Open Science. 5 (4): 172393. Bibcode:2018RSOS....572393H. doi:10.1098/rsos.172393. PMC 5936949. PMID 29765684.
  242. ^ S. J. Rahmat; I. A. Koretsky (2018). "Mandibular morphology of the Mid-Miocene seal Devinophoca claytoni (Carnivora, Phocidae, Devinophocinae)". Vestnik Zoologii. 52 (6): 509–520. doi:10.2478/vzoo-2018-0052. S2CID 91389532.
  243. ^ Leonard Dewaele; Olivier Lambert; Stephen Louwye (2018). "A late surviving Pliocene seal from high latitudes of the North Atlantic realm: the latest monachine seal on the southern margin of the North Sea". PeerJ. 6: e5734. doi:10.7717/peerj.5734. PMC 6183512. PMID 30324020.
  244. ^ Sulman Rahmat; Fernando Muñiz; Antonio Toscano; Raúl Esperante; Irina Koretsky (2018). "First European record of Homiphoca (Phocidae: Monachinae: Lobodontini) and its bearing on the paleobiogeography of the genus". Historical Biology: An International Journal of Paleobiology. 32 (4): 561–569. doi:10.1080/08912963.2018.1507030. S2CID 92838053.
  245. ^ Jorge Velez-Juarbe (2018). "New data on the early odobenid Neotherium mirum Kellogg, 1931, and other pinniped remains from the Sharktooth Hill Bonebed, California". Journal of Vertebrate Paleontology. 38 (4): (1)–(14). doi:10.1080/02724634.2018.1481080. S2CID 91544891.
  246. ^ Sarah J. Boessenecker; Robert W. Boessenecker; Jonathan H. Geisler (2018). "Youngest record of the extinct walrus Ontocetus emmonsi from the Early Pleistocene of South Carolina and a review of North Atlantic walrus biochronology". Acta Palaeontologica Polonica. 63 (2): 279–286. doi:10.4202/app.00454.2018.
  247. ^ Jim Williams; Peter Andrews; Sara García-Morato; Paola Villa; Yolanda Fernández-Jalvo (2018). "Hyena as a predator of small mammals? Taphonomic analysis from the site of Bois Roche, France". Paleobiology. 44 (3): 511–529. doi:10.1017/pab.2018.13. S2CID 90343101.
  248. ^ Vlasta Petrovič; Martin Sabol; Juraj Šurka; Martin Pyszko; Ladislav Stehlík (2018). "External brain morphology of juvenile cave hyena (Crocuta crocuta spelaea) from the Jasovská jaskyňa Cave (Slovakia) revealed by X-ray computed tomography". Acta Geologica Slovaca. 10 (2): 133–142.
  249. ^ Nicolás R. Chimento; Alejandro Dondas (2018). "First Record of Puma concolor (Mammalia, Felidae) in the Early-Middle Pleistocene of South America". Journal of Mammalian Evolution. 25 (3): 381–389. doi:10.1007/s10914-017-9385-x. S2CID 16249074.
  250. ^ Camille Grohé; Beatrice Lee; John J. Flynn (2018). "Recent inner ear specialization for high-speed hunting in cheetahs". Scientific Reports. 8 (1): Article number 2301. Bibcode:2018NatSR...8.2301G. doi:10.1038/s41598-018-20198-3. PMC 5797172. PMID 29396425.
  251. ^ Marco Cherin; Dawid A. Iurino; Marco Zanatta; Vincent Fernandez; Alessandro Paciaroni; Caterina Petrillo; Roberto Rettori; Raffaele Sardella (2018). "Synchrotron radiation reveals the identity of the large felid from Monte Argentario (Early Pleistocene, Italy)". Scientific Reports. 8 (1): Article number 8338. Bibcode:2018NatSR...8.8338C. doi:10.1038/s41598-018-26698-6. PMC 5974229. PMID 29844540.
  252. ^ Martin Sabol; Juraj Gullár; Ján Horvát (2018). "Montane record of the late Pleistocene Panthera spelaea (Goldfuss, 1810) from the Západné Tatry Mountains (northern Slovakia)". Journal of Vertebrate Paleontology. 38 (3): e1467921. doi:10.1080/02724634.2018.1467921. S2CID 90751857.
  253. ^ D. O. Gimranov; V. G. Kotov; M. M. Rumyantsev; V. I. Silaev; A. G. Yakovlev; T. I. Yakovleva; N. V. Zelenkov; M. V. Sotnikova; M. M. Devyashin; N. A. Plasteeva; N. E. Zaretskaya; I. M. Nurmukhametov; N. G. Smirnov; P. A. Kosintsev (2018). "A mass burial of fossil lions (Carnivora, Felidae, Panthera (Leo) ex gr. fossilis-spelaea) from Eurasia". Doklady Biological Sciences. 482 (1): 191–193. doi:10.1134/S0012496618050046. PMID 30402757. S2CID 53228473.
  254. ^ Fredrick K. Manthi; Francis H. Brown; Michael J. Plavcan; Lars Werdelin (2018). "Gigantic lion, Panthera leo, from the Pleistocene of Natodomeri, eastern Africa". Journal of Paleontology. 92 (2): 305–312. doi:10.1017/jpa.2017.68. S2CID 34070489.
  255. ^ Johanna L. A. Paijmans; Axel Barlow; Daniel W. Förster; Kirstin Henneberger; Matthias Meyer; Birgit Nickel; Doris Nagel; Rasmus Worsøe Havmøller; Gennady F. Baryshnikov; Ulrich Joger; Wilfried Rosendahl; Michael Hofreiter (2018). "Historical biogeography of the leopard (Panthera pardus) and its extinct Eurasian populations". BMC Evolutionary Biology. 18 (1): 156. doi:10.1186/s12862-018-1268-0. PMC 6198532. PMID 30348080.
  256. ^ Sergio Gabriel Rodriguez; Cecilia Méndez; Esteban Soibelzon; Leopoldo Héctor Soibelzon; Silvina Contreras; Juan Friedrichs; Carlos Luna; Alfredo Eduardo Zurita (2018). "Panthera onca (Carnivora, Felidae) in the late Pleistocene-early Holocene of northern Argentina". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 289 (2): 177–187. doi:10.1127/njgpa/2018/0758. S2CID 134297042.
  257. ^ Paolo Piras; Daniele Silvestro; Francesco Carotenuto; Silvia Castiglione; Anastassios Kotsakis; Leonardo Maiorino; Marina Melchionna; Alessandro Mondanaro; Gabriele Sansalone (2018). "Evolution of the sabertooth mandible: A deadly ecomorphological specialization". Palaeogeography, Palaeoclimatology, Palaeoecology. 496: 166–174. Bibcode:2018PPP...496..166P. doi:10.1016/j.palaeo.2018.01.034. hdl:2158/1268434.
  258. ^ Tomohiro Harano; Nobuyuki Kutsukake (2018). "Directional selection in the evolution of elongated upper canines in clouded leopards and sabre-toothed cats". Journal of Evolutionary Biology. 31 (9): 1268–1283. doi:10.1111/jeb.13309. PMID 29904973. S2CID 49208818.
  259. ^ I. A. Vislobokova (2018). "On a new find of Megantereon (Carnivora, Felidae, Machairodontinae) from the Early Pleistocene of Trlica (Montenegro, the central Balkans)". Paleontological Journal. 52 (12): 1445–1449. doi:10.1134/S0031030118120201. S2CID 92543210.
  260. ^ Aldo Manzuetti; Daniel Perea; Martín Ubilla; Andrés Rinderknecht (2018). "First record of Smilodon fatalis Leidy, 1868 (Felidae, Machairodontinae) in the extra-Andean region of South America (late Pleistocene, Sopas Formation), Uruguay: Taxonomic and paleobiogeographic implications". Quaternary Science Reviews. 180: 57–62. Bibcode:2018QSRv..180...57M. doi:10.1016/j.quascirev.2017.11.024.
  261. ^ Borja Figueirido; Stephan Lautenschlager; Alejandro Pérez-Ramos; Blaire Van Valkenburgh (2018). "Distinct predatory behaviors in scimitar- and dirk-toothed sabertooth cats". Current Biology. 28 (20): 3260–3266.e3. doi:10.1016/j.cub.2018.08.012. PMID 30293717. S2CID 52929593.
  262. ^ Robert W. Boessenecker; Morgan Churchill (2018). "The last of the desmatophocid seals: a new species of Allodesmus from the upper Miocene of Washington, USA, and a revision of the taxonomy of Desmatophocidae". Zoological Journal of the Linnean Society. 184 (1): 211–235. doi:10.1093/zoolinnean/zlx098.
  263. ^ Wataru Tonomori; Hiroshi Sawamura; Tamaki Sato; Naoki Kohno (2018). "A new Miocene pinniped Allodesmus (Mammalia: Carnivora) from Hokkaido, northern Japan". Royal Society Open Science. 5 (5): 172440. Bibcode:2018RSOS....572440T. doi:10.1098/rsos.172440. PMC 5990790. PMID 29892431.
  264. ^ a b Leonard Dewaele; Carlos Mauricio Peredo; Pjotr Meyvisch; Stephen Louwye (2018). "Diversity of late Neogene Monachinae (Carnivora, Phocidae) from the North Atlantic, with the description of two new species". Royal Society Open Science. 5 (3): 172437. Bibcode:2018RSOS....572437D. doi:10.1098/rsos.172437. PMC 5882749. PMID 29657825.
  265. ^ Francesco Maria Angelici; Lorenzo Rossi (2018). "A new subspecies of grey wolf (Carnivora, Canidae), recently extinct, from Sicily, Italy" (PDF). Bollettino del Museo Civico di Storia Naturale di Verona. Botanica Zoologia. 42: 3–15.
  266. ^ Jean-Baptiste Fourvel (2018). "Civettictis braini nov. sp. (Mammalia: Carnivora), a new viverrid from the hominin-bearing site of Kromdraai (Gauteng, South Africa)". Comptes Rendus Palevol. 17 (6): 366–377. doi:10.1016/j.crpv.2017.11.005.
  267. ^ a b Lorenzo Rook; Saverio Bartolini Lucenti; Caterinella Tuveri; Marisa Arca (2018). "Mustelids (Carnivora, Mammalia) from Monte Tuttavista fissure fillings (Early and Middle Pleistocene; Orosei, Sardinia): Taxonomy and evolution of the insular Sardinian Galictini". Quaternary Science Reviews. 197: 209–223. Bibcode:2018QSRv..197..209R. doi:10.1016/j.quascirev.2018.08.022. S2CID 134162908.
  268. ^ a b Leonard Dewaele; Olivier Lambert; Stephen Louwye (2018). "A critical revision of the fossil record, stratigraphy and diversity of the Neogene seal genus Monotherium (Carnivora, Phocidae)". Royal Society Open Science. 5 (5): 171669. Bibcode:2018RSOS....571669D. doi:10.1098/rsos.171669. PMC 5990722. PMID 29892365.
  269. ^ Joshua X. Samuels; Keila E. Bredehoeft; Steven C. Wallace (2018). "A new species of Gulo from the Early Pliocene Gray Fossil Site (Eastern United States); rethinking the evolution of wolverines". PeerJ. 6: e4648. doi:10.7717/peerj.4648. PMC 5910791. PMID 29682423.
  270. ^ a b Brent Adrian; Lars Werdelin; Aryeh Grossman (2018). "New Miocene Carnivora (Mammalia) from Moruorot and Kalodirr, Kenya". Palaeontologia Electronica. 21 (1): Article number 21.1.10A. doi:10.26879/778.
  271. ^ Saverio Bartolini Lucenti (2018). "Revising the species "Mustela" ardea Gervais, 1848–1852 (Mammalia, Mustelidae): Martellictis gen. nov. and the systematics of the fossil "Galictinae" of Eurasia". Comptes Rendus Palevol. 17 (8): 522–535. doi:10.1016/j.crpv.2018.02.003.
  272. ^ Qi-Gao Jiangzuo; Jin-Yi Liu; Jan Wagner; Jin Chen (2018). "Taxonomical revision of "Arctonyx" fossil remains from the Liucheng Gigantopithecus Cave (South China) by means of morphotype and morphometrics, and a review of Late Pliocene and Early Pleistocene Meles fossil records in China". Palaeoworld. 27 (2): 282–300. doi:10.1016/j.palwor.2017.12.001. S2CID 134851852.
  273. ^ Jorge Velez-Juarbe; Fernando M. Salinas-Márquez (2018). "A dwarf walrus from the Miocene of Baja California Sur, Mexico". Royal Society Open Science. 5 (8): 180423. doi:10.1098/rsos.180423. PMC 6124023. PMID 30225030.
  274. ^ a b c Laura G. Emmert; Rachel A. Short (2018). "Three new procyonids (Mammalia, Carnivora) from the Blancan of Florida" (PDF). Bulletin of the Florida Museum of Natural History. 55 (8): 157–173.
  275. ^ Sarah R. Stinnesbeck; Wolfgang Stinnesbeck; Eberhard Frey; Jerónimo Avilés Olguín; Carmen Rojas Sandoval; Adriana Velázquez Morlet; Arturo H. González (2020). "Panthera balamoides and other Pleistocene felids from the submerged caves of Tulum, Quintana Roo, Mexico". Historical Biology: An International Journal of Paleobiology. 32 (7): 930–939. doi:10.1080/08912963.2018.1556649. S2CID 92328512.
  276. ^ Louis de Bonis; Stéphane Peigné; Hassane Taisso Mackaye; Andossa Likius; Patrick Vignaud; Michel Brunet (2018). "New sabre toothed Felidae (Carnivora, Mammalia) in the hominid-bearing sites of Toros Menalla (late Miocene, Chad)". Geodiversitas. 40 (3): 69–86. doi:10.5252/geodiversitas2018v40a3. S2CID 134769588.
  277. ^ Isaac Magallanes; James F. Parham; Gabriel-Philip Santos; Jorge Velez-Juarbe (2018). "A new tuskless walrus from the Miocene of Orange County, California, with comments on the diversity and taxonomy of odobenids". PeerJ. 6: e5708. doi:10.7717/peerj.5708. PMC 6188011. PMID 30345169.
  278. ^ Fernando Blanco; Ana Rosa Gómez Cano; Juan L. Cantalapiedra; M. Soledad Domingo; Laura Domingo; Iris Menéndez; Lawrence J. Flynn; Manuel Hernández Fernández (2018). "Differential responses of Miocene rodent metacommunities to global climatic changes were mediated by environmental context". Scientific Reports. 8 (1): Article number 2502. Bibcode:2018NatSR...8.2502B. doi:10.1038/s41598-018-20900-5. PMC 5802738. PMID 29410503.
  279. ^ Siobhán B. Cooke; Brooke E. Crowley (2018). "Deciphering the isotopic niches of now-extinct Hispaniolan rodents". Journal of Vertebrate Paleontology. 38 (5): e1510414. doi:10.1080/02724634.2018.1510414. S2CID 92486564.
  280. ^ Łucja Fostowicz-Frelik; Qian Li; Xijun Ni (2018). "Oldest ctenodactyloid tarsals from the Eocene of China and evolution of locomotor adaptations in early rodents". BMC Evolutionary Biology. 18 (1): 150. doi:10.1186/s12862-018-1259-1. PMC 6172738. PMID 30286712.
  281. ^ Andrés Rinderknecht; Enrique Bostelmann; Martín Ubilla (2018). "Making a giant rodent: cranial anatomy and ontogenetic development in the genus Isostylomys (Mammalia, Hystricognathi, Dinomyidae)". Journal of Systematic Palaeontology. 16 (3): 245–261. doi:10.1080/14772019.2017.1285360. S2CID 90400618.
  282. ^ Leonardo Kerber; Elver Luiz Mayer; Anny Caroliny Gomes; Norma Nasif (2018). "On the morphological, taxonomic, and phylogenetic status of South American Quaternary dinomyid rodents (Rodentia: Dinomyidae)". PalZ. 94 (1): 167–178. doi:10.1007/s12542-018-0435-3. S2CID 91735420.
  283. ^ Adriana M. Candela; Nahuel A. Muñoz; César M. García-Esponda (2018). "Paleobiology of the basal hydrochoerine Cardiomys Ameghino, 1885 (Rodentia, Caviomorpha, late Miocene, South America) as inferred from its postcranial anatomy". Journal of Paleontology. 92 (5): 911–919. doi:10.1017/jpa.2018.12. S2CID 135148808.
  284. ^ Diego H. Verzi; A. Itatí Olivares; Patricia Hadler; Juan C. Castro; Eduardo P. Tonni (2018). "Occurrence of Dicolpomys (Echimyidae) in the late Holocene of Argentina: The most recently extinct South American caviomorph genus". Quaternary International. 490: 123–131. Bibcode:2018QuInt.490..123V. doi:10.1016/j.quaint.2018.04.041. S2CID 134395211.
  285. ^ Lazaro W. Viñola Lopez; Orlando H. Garrido; Alberto Bermúdez (2018). "Notes on Mesocapromys sanfelipensis (Rodentia: Capromyidae) from Cuba". Zootaxa. 4410 (1): 164–176. doi:10.11646/zootaxa.4410.1.9. PMID 29690162.
  286. ^ Luciano L. Rasia; Adriana M. Candela (2018). "Reappraisal of the giant caviomorph rodent Phoberomys burmeisteri (Ameghino, 1886) from the late Miocene of northeastern Argentina, and the phylogeny and diversity of Neoepiblemidae". Historical Biology: An International Journal of Paleobiology. 30 (4): 486–495. doi:10.1080/08912963.2017.1294168. S2CID 90381892.
  287. ^ Raúl I. Vezzosi; Leonardo Kerber (2018). "The southernmost record of a large erethizontid rodent (Hystricomorpha: Erethizontoidea) in the Pleistocene of South America: Biogeographic and paleoenvironmental implications". Journal of South American Earth Sciences. 82: 76–90. Bibcode:2018JSAES..82...76V. doi:10.1016/j.jsames.2017.12.015.
  288. ^ Maxim V. Sinitsa (2018). "Phylogenetic position of Sinotamias and the early evolution of Marmotini (Rodentia, Sciuridae, Xerinae)". Journal of Vertebrate Paleontology. 38 (1): e1419251. doi:10.1080/02724634.2017.1419251. S2CID 89877974.
  289. ^ Jonathan J. M. Calede; John D. Orcutt; Winifred A. Kehl; Bill D. Richards (2018). "The first tetrapod from the mid-Miocene Clarkia lagerstätte (Idaho, USA)". PeerJ. 6: e4880. doi:10.7717/peerj.4880. PMC 5995101. PMID 29900070.
  290. ^ Isaac Casanovas-Vilar; Joan Garcia-Porta; Josep Fortuny; Óscar Sanisidro; Jérôme Prieto; Marina Querejeta; Sergio Llácer; Josep M. Robles; Federico Bernardini; David M. Alba (2018). "Oldest skeleton of a fossil flying squirrel casts new light on the phylogeny of the group". eLife. 7: e39270. doi:10.7554/eLife.39270. PMC 6177260. PMID 30296996.
  291. ^ Ornella C. Bertrand; Farrah Amador-Mughal; Madlen M. Lang; Mary T. Silcox (2018). "Virtual endocasts of fossil Sciuroidea: brain size reduction in the evolution of fossoriality". Palaeontology. 61 (6): 919–948. doi:10.1111/pala.12378. S2CID 134358182.
  292. ^ Dariusz Nowakowski; Leonid Rekovets; Oleksandr Kovalchuk; Edward Pawlina; Vitalii Demeshkant (2018). "Enamel ultrastructure of molars in †Anomalomys gaillardi and some spalacid taxa (Rodentia, Mammalia)". Palaeontologia Electronica. 21 (2): Article number 21.2.18A. doi:10.26879/846.
  293. ^ Ulyses F.J. Pardiñas; Franck Barbière (2018). "The Pleistocene record attributed to the cricetid genus Nectomys (Rodentia, Sigmodontinae): unexpected connections". Mammalia. 82 (2): 201–206. doi:10.1515/mammalia-2017-0020. S2CID 90159000.
  294. ^ Lourdes Valdez; Guilermo D'Elía (2018). "Local persistence of Mann's soft-haired mouse Abrothrix manni (Rodentia, Sigmodontinae) during Quaternary glaciations in southern Chile". PeerJ. 6: e6130. doi:10.7717/peerj.6130. PMC 6302793. PMID 30588409.
  295. ^ Blanca Moncunill-Solé; Xavier Jordana; Meike Köhler (2018). "Where did Mikrotia magna originate? Drawing ecogeographical inferences from body mass reconstructions". Geobios. 51 (4): 359–366. doi:10.1016/j.geobios.2018.06.006. S2CID 135031316.
  296. ^ Tatiana Aghová; Yuri Kimura; Josef Bryja; Gauthier Dobigny; Laurent Granjon; Gael J. Kergoat (2018). "Fossils know it best: Using a new set of fossil calibrations to improve the temporal phylogenetic framework of murid rodents (Rodentia: Muridae)". Molecular Phylogenetics and Evolution. 128: 98–111. doi:10.1016/j.ympev.2018.07.017. PMID 30030180. S2CID 51705750.
  297. ^ a b Qiang Li; Thomas A. Stidham; Xijun Ni; Lüzhou Li (2018). "Two new Pliocene hamsters (Cricetidae, Rodentia) from southwestern Tibet (China), and their implications for rodent dispersal 'into Tibet'". Journal of Vertebrate Paleontology. 37 (6): e1403443. doi:10.1080/02724634.2017.1403443. S2CID 90488470.
  298. ^ Qian Li (2018). "Additional cricetid and dipodid rodent material from the Erden Obo section, Erlian Basin (Nei Mongol, China) and its biochronological implications". Palaeoworld. 27 (4): 490–505. doi:10.1016/j.palwor.2018.09.003. S2CID 134516175.
  299. ^ Julien Louys; Sue O'Connor; Mahirta; Pennilyn Higgins; Stuart Hawkins; Tim Maloney (2018). "New genus and species of giant rat from Alor Island, Indonesia". Journal of Asia-Pacific Biodiversity. 11 (4): 503–510. doi:10.1016/j.japb.2018.08.005.
  300. ^ a b Hans de Bruijn; Zoran Marković; Wilma Wessels; Andrew A. van de Weerd (2018). "Pappocricetodontinae (Rodentia, Muridae) from the Paleogene of south-east Serbia". Palaeobiodiversity and Palaeoenvironments. 99 (3): 511–526. doi:10.1007/s12549-018-0343-2. S2CID 133944832.
  301. ^ Esperanza Cerdeño; María E. Pérez; Cecilia M. Deschamps; Víctor H. Contreras (2019). "A new capybara from the late Miocene of San Juan Province, Argentina, and its phylogenetic implications". Acta Palaeontologica Polonica. 64 (1): 199–212. doi:10.4202/app.00544.2018.
  302. ^ a b c d e María Encarnación Pérez; Michelle Arnal; Myriam Boivin; María Guiomar Vucetich; Adriana Candela; Felipe Busker; Bernardino Mamani Quispe (2018). "New caviomorph rodents from the late Oligocene of Salla, Bolivia: taxonomic, chronological, and biogeographic implications for the Deseadan faunas of South America". Journal of Systematic Palaeontology. 17 (10): 821–847. doi:10.1080/14772019.2018.1471622. S2CID 89662626.
  303. ^ a b Ismael Ferrusquia-Villafranca; Lawrence J. Flynn; Jose E. Ruiz-Gonzalez; Jose Ramon Torres-Hernandez; Enrique Martinez-Hernandez (2018). "New Eocene rodents from Northwestern Oaxaca, Southeastern Mexico, and their paleobiological significance". Journal of Vertebrate Paleontology. 38 (5): e1514615. doi:10.1080/02724634.2018.1514615. S2CID 92107286.
  304. ^ a b c d e f g Myriam Boivin; Laurent Marivaux; François Pujos; Rodolfo Salas-Gismondi; Julia V. Tejada-Lara; Rafael M. Varas-Malca; Pierre-Olivier Antoine (2018). "Early Oligocene caviomorph rodents from Shapaja, Peruvian Amazonia". Palaeontographica Abteilung A. 311 (1–6): 87–156. doi:10.1127/pala/2018/0075. S2CID 135082842.
  305. ^ Pablo Pelaez-Campomanes; Fikret Göktaş; Tanju Kaya; Peter Joniak; Melike Bilgin; Serdar Mayda; Lars W. van den Hoek Ostende (2018). "Gördes: a new early Miocene micromammal assemblage from western Anatolia". Palaeobiodiversity and Palaeoenvironments. 99 (4): 639–653. doi:10.1007/s12549-018-0346-z. S2CID 134949723.
  306. ^ Thomas Mörs; Yukimitsu Tomida (2018). "Euroxenomys nanus sp. nov., a minute beaver (Rodentia, Castoridae) from the Early Miocene of Japan". Paleontological Research. 22 (2): 145–149. doi:10.2517/2017PR013. S2CID 135123180.
  307. ^ Eduardo Jiménez-Hidalgo; Rosalía Guerrero-Arenas; Krister T. Smith (2018). "Gregorymys veloxikua, The Oldest Pocket Gopher (Rodentia: Geomyidae), and The Early Diversification of Geomyoidea". Journal of Mammalian Evolution. 25 (3): 427–439. doi:10.1007/s10914-017-9383-z. S2CID 207195992.
  308. ^ Raquel López-Antoñanzas; Pablo Peláez-Campomanes; Jérôme Prieto; Fabien Knoll (2018). "New species of Karydomys (Rodentia) from the Miocene of Chios Island (Greece) and phylogenetic relationships of this rare democricetodontine genus" (PDF). Papers in Palaeontology. 5 (1): 33–45. doi:10.1002/spp2.1224. S2CID 134578075.
  309. ^ Franck Barbière; Pablo E. Ortiz; Ulyses F.J. Pardiñas (2018). "The oldest sigmodontine rodent revisited and the age of the first South American cricetids". Journal of Paleontology. 93 (2): 368–384. doi:10.1017/jpa.2018.74. S2CID 135378126.
  310. ^ a b Jonathan Cramb; Gilbert J. Price; Scott A. Hocknull (2018). "Short-tailed mice with a long fossil record: the genus Leggadina (Rodentia: Muridae) from the Quaternary of Queensland, Australia". PeerJ. 6: e5639. doi:10.7717/peerj.5639. PMC 6152458. PMID 30258727.
  311. ^ Mary R. Dawson; Kurt N. Constenius (2018). "Mammalian fauna of the Middle Eocene Kishenehn Formation, Middle Fork of the Flathead River, Montana". Annals of Carnegie Museum. 85 (1): 25–60. doi:10.2992/007.085.0103. S2CID 92205784.
  312. ^ Wilma Wessels; Andrew A. van de Weerd; Hans de Bruijn; Zoran Marković (2018). "New Melissiodontinae (Mammalia, Rodentia) from the Paleogene of south-east Serbia". Palaeobiodiversity and Palaeoenvironments. 98 (3): 471–487. doi:10.1007/s12549-017-0311-2. PMC 6417381. PMID 30956715.
  313. ^ Pierre Mein; Martin Pickford (2018). "Reithroparamyine rodent from the Eocene of Namibia" (PDF). Communications of the Geological Survey of Namibia. 18: 38–47.
  314. ^ M. Carolina Madozzo-Jaén; M. Encarnación Pérez; Claudia I. Montalvo; Rodrigo L. Tomassini (2018). "Systematic review of Neocavia from the Neogene of Argentina: Phylogenetic and evolutionary implications". Acta Palaeontologica Polonica. 63 (2): 241–260. doi:10.4202/app.00464.2018.
  315. ^ Robert A. Martin; Alexey Tesakov; Jordi Agustí; Karla Johnston (2018). "Orcemys, a new genus of arvicolid rodent from the early Pleistocene of the Guadix–Baza Basin, southern Spain". Comptes Rendus Palevol. 17 (4–5): 310–319. doi:10.1016/j.crpv.2017.06.006.
  316. ^ a b Andrew A. van de Weerd; Hans de Bruijn; Zoran Marković; Wilma Wessels (2018). "Paracricetodontinae (Mammalia, Rodentia) from the late Eocene and early Oligocene of south-east Serbia". Palaeobiodiversity and Palaeoenvironments. 98 (3): 489–508. doi:10.1007/s12549-017-0317-9. PMC 6417380. PMID 30956716.
  317. ^ a b c Ban-Yue Wang (2018). Late Miocene pararhizomyines from Linxia Basin of Gansu, China. Palaeontologia Sinica. Vol. 200, New Series C31. pp. 1–174. ISBN 978-7030575128.
  318. ^ Thijs van Kolfschoten; Alexey S. Tesakov; Christopher J. Bell (2018). "The first record of Phenacomys (Mammalia, Rodentia, Cricetidae) in Europe (early Pleistocene, Zuurland, The Netherlands)". Quaternary Science Reviews. 192: 274–281. Bibcode:2018QSRv..192..274V. doi:10.1016/j.quascirev.2018.06.005. S2CID 135265006.
  319. ^ Jérôme Prieto; Xiao-Yu Lu; Olivier Maridet; Damien Becker; Claudius Pirkenseer; Gaëtan Rauber; Pablo Peláez-Campomanes (2018). "New data on the Miocene dormouse Simplomys García-Paredes, 2009 from the peri-alpin basins of Switzerland and Germany: palaeodiversity of a rare genus in Central Europe" (PDF). Palaeobiodiversity and Palaeoenvironments. 99 (3): 527–543. doi:10.1007/s12549-018-0339-y. S2CID 134745607.
  320. ^ Martin Pickford (2018). "New Zegdoumyidae (Rodentia, Mammalia) from the Middle Eocene of Black Crow, Namibia : taxonomy, dental formula" (PDF). Communications of the Geological Survey of Namibia. 18: 48–63.
  321. ^ Martin Pickford (2018). "Tufamyidae, a new family of hystricognath rodents from the Palaeogene and Neogene of the Sperrgebiet, Namibia" (PDF). Communications of the Geological Survey of Namibia. 19: 71–109.
  322. ^ Maxim V. Sinitsa; Valentin A. Nesin (2018). "Systematics and phylogeny of Vasseuromys (Mammalia, Rodentia, Gliridae) with a description of a new species from the late Miocene of eastern Europe". Palaeontology. 61 (5): 679–701. doi:10.1111/pala.12359. S2CID 133844750.
  323. ^ James B. Rossie; Timothy D. Smith; K. Christopher Beard; Marc Godinot; Timothy B. Rowe (2018). "Nasolacrimal anatomy and haplorhine origins". Journal of Human Evolution. 114: 176–183. doi:10.1016/j.jhevol.2017.11.004. PMID 29447758.
  324. ^ Gregg F. Gunnell; Doug M. Boyer; Anthony R. Friscia; Steven Heritage; Fredrick Kyalo Manthi; Ellen R. Miller; Hesham M. Sallam; Nancy B. Simmons; Nancy J. Stevens; Erik R. Seiffert (2018). "Fossil lemurs from Egypt and Kenya suggest an African origin for Madagascar's aye-aye". Nature Communications. 9 (1): Article number 3193. Bibcode:2018NatCo...9.3193G. doi:10.1038/s41467-018-05648-w. PMC 6104046. PMID 30131571.
  325. ^ Jonathan M. G. Perry (2018). "Inferring the diets of extinct giant lemurs from osteological correlates of muscle dimensions". The Anatomical Record. 301 (2): 343–362. doi:10.1002/ar.23719. PMID 29330948. S2CID 3678489.
  326. ^ Laura K. Stroik; Gary T. Schwartz (2018). "The role of dietary competition in the origination and early diversification of North American euprimates". Proceedings of the Royal Society B: Biological Sciences. 285 (1884): 20181230. doi:10.1098/rspb.2018.1230. PMC 6111171. PMID 30068683.
  327. ^ Doug M. Boyer; Stephanie A. Maiolino; Patricia A. Holroyd; Paul E. Morse; Jonathan I. Bloch (2018). "Oldest evidence for grooming claws in euprimates". Journal of Human Evolution. 122: 1–22. doi:10.1016/j.jhevol.2018.03.010. PMID 29935935. S2CID 49412836.
  328. ^ Thomas A. Püschel; Jordi Marcé-Nogué; Justin T. Gladman; René Bobe; William I. Sellers (2018). "Inferring locomotor behaviours in Miocene New World monkeys using finite element analysis, geometric morphometrics and machine-learning classification techniques applied to talar morphology". Journal of the Royal Society Interface. 15 (146): 20180520. doi:10.1098/rsif.2018.0520. PMC 6170775. PMID 30257926.
  329. ^ Nelson M. Novo; Marcelo F. Tejedor; Laureano Raúl González Ruiz (2018). "Previously unknown fossil platyrrhines (Primates) of Patagonia from the Tournouër collection at the Muséum national d'Histoire naturelle, Paris". Geodiversitas. 40 (22): 529–535. doi:10.5252/geodiversitas2018v40a22. S2CID 134259445.
  330. ^ Roseina Woods; Samuel T. Turvey; Selina Brace; Ross D. E. MacPhee; Ian Barnes (2018). "Ancient DNA of the extinct Jamaican monkey Xenothrix reveals extreme insular change within a morphologically conservative radiation". Proceedings of the National Academy of Sciences of the United States of America. 115 (50): 12769–12774. doi:10.1073/pnas.1808603115. PMC 6294883. PMID 30420497.
  331. ^ Myra F. Laird; Elaine E. Kozma; Amandus Kwekason; Terry Harrison (2018). "A new fossil cercopithecid tibia from Laetoli and its implications for positional behavior and paleoecology". Journal of Human Evolution. 118: 27–42. doi:10.1016/j.jhevol.2018.02.005. PMID 29606201.
  332. ^ Dimitris S. Kostopoulos; Franck Guy; Zoi Kynigopoulou; George D. Koufos; Xavier Valentin; Gildas Merceron (2018). "A 2Ma old baboon-like monkey from Northern Greece and new evidence to support the ParadolichopithecusProcynocephalus synonymy (Primates: Cercopithecidae)". Journal of Human Evolution. 121: 178–192. doi:10.1016/j.jhevol.2018.02.012. PMID 29779686. S2CID 29167579.
  333. ^ Kelsey D. Pugh; Christopher C. Gilbert (2018). "Phylogenetic relationships of living and fossil African papionins: Combined evidence from morphology and molecules". Journal of Human Evolution. 123: 35–51. doi:10.1016/j.jhevol.2018.06.002. PMID 30057325. S2CID 51866405.
  334. ^ Christopher C. Gilbert; Stephen R. Frost; Kelsey D. Pugh; Monya Anderson; Eric Delson (2018). "Evolution of the modern baboon (Papio hamadryas): A reassessment of the African Plio-Pleistocene record". Journal of Human Evolution. 122: 38–69. doi:10.1016/j.jhevol.2018.04.012. PMID 29954592. S2CID 49597411.
  335. ^ Florian Martin; Chris-Alexander Plastiras; Gildas Merceron; Antoine Souron; Jean-Renaud Boisserie (2018). "Dietary niches of terrestrial cercopithecines from the Plio-Pleistocene Shungura Formation, Ethiopia: evidence from Dental Microwear Texture Analysis". Scientific Reports. 8 (1): Article number 14052. Bibcode:2018NatSR...814052M. doi:10.1038/s41598-018-32092-z. PMC 6145942. PMID 30232366.
  336. ^ Jelle W.F. Reumer; Dick Mol; Ralf-Dietrich Kahlke (2018). "First finds of Pleistocene Macaca sylvanus (Cercopithecidae, Primates) from the North Sea". Revue de Paléobiologie, Genève. 37 (2): 555–560.
  337. ^ Daniel DeMiguel; Lorenzo Rook (2018). "Understanding climate's influence on the extinction of Oreopithecus (late Miocene, Tusco-Sardinian paleobioprovince, Italy)". Journal of Human Evolution. 116: 14–26. doi:10.1016/j.jhevol.2017.11.008. PMID 29477179.
  338. ^ Yasuhiro Kikuchi; Masato Nakatsukasa; Hiroshi Tsujikawa; Yoshihiko Nakano; Yutaka Kunimatsu; Naomichi Ogihara; Daisuke Shimizu; Tomo Takano; Hideo Nakaya; Yoshihiro Sawada; Hidemi Ishida (2018). "Sexual dimorphism of body size in an African fossil ape, Nacholapithecus kerioi". Journal of Human Evolution. 123: 129–140. doi:10.1016/j.jhevol.2018.07.003. PMID 30119896. S2CID 206143098.
  339. ^ Tomo Takano; Masato Nakatsukasa; Yutaka Kunimatsu; Yoshihiko Nakano; Naomichi Ogihara; Hidemi Ishida (2018). "Forelimb long bones of Nacholapithecus (KNM-BG 35250) from the middle Miocene in Nachola, northern Kenya". Anthropological Science. 126 (3): 135–149. doi:10.1537/ase.181022.
  340. ^ Ansuya Bhandari; Richard F. Kay; Blythe A. Williams; Brahma Nand Tiwari; Sunil Bajpai; Tobin Hieronymus (2018). "First record of the Miocene hominoid Sivapithecus from Kutch, Gujarat state, western India". PLOS ONE. 13 (11): e0206314. Bibcode:2018PLoSO..1306314B. doi:10.1371/journal.pone.0206314. PMC 6235281. PMID 30427876.
  341. ^ Stephanie N. Spehar; Douglas Sheil; Terry Harrison; Julien Louys; Marc Ancrenaz; Andrew J. Marshall; Serge A. Wich; Michael W. Bruford; Erik Meijaard (2018). "Orangutans venture out of the rainforest and into the Anthropocene". Science Advances. 4 (6): e1701422. Bibcode:2018SciA....4E1422S. doi:10.1126/sciadv.1701422. PMC 6021148. PMID 29963619.
  342. ^ Jochen Fuss; Gregor Uhlig; Madelaine Böhme (2018). "Earliest evidence of caries lesion in hominids reveal sugar-rich diet for a Middle Miocene dryopithecine from Europe". PLOS ONE. 13 (8): e0203307. Bibcode:2018PLoSO..1303307F. doi:10.1371/journal.pone.0203307. PMC 6117023. PMID 30161214.
  343. ^ Julien Benoit; Francis J. Thackeray (2017). "A cladistic analysis of Graecopithecus". South African Journal of Science. 113 (11/12): #a0238. doi:10.17159/sajs.2017/a0238.
  344. ^ Jochen Fuss; Nikolai Spassov; Madelaine Böhme; David R. Begun (2018). "Response to Benoit and Thackeray (2017): "A cladistic analysis of Graecopithecus"". South African Journal of Science. 114 (5/6): 11–12. doi:10.17159/sajs.2018/a0267.
  345. ^ Tesla A. Monson; David W. Armitage; Leslea J. Hlusko (2018). "Using machine learning to classify extant apes and interpret the dental morphology of the chimpanzee-human last common ancestor". PaleoBios. 35: ucmp_paleobios_40776.
  346. ^ Tanya M. Smith; Alexandra Houssaye; Ottmar Kullmer; Adeline Le Cabec; Anthony J. Olejniczak; Friedemann Schrenk; John de Vos; Paul Tafforeau (2018). "Disentangling isolated dental remains of Asian Pleistocene hominins and pongines". PLOS ONE. 13 (11): e0204737. Bibcode:2018PLoSO..1304737S. doi:10.1371/journal.pone.0204737. PMC 6211657. PMID 30383758.
  347. ^ Christopher B. Ruff; M. Loring Burgess; Nicole Squyres; Juho-Antti Junno; Erik Trinkaus (2018). "Lower limb articular scaling and body mass estimation in Pliocene and Pleistocene hominins". Journal of Human Evolution. 115: 85–111. doi:10.1016/j.jhevol.2017.10.014. PMID 29331230.
  348. ^ Andrew Du; Andrew M. Zipkin; Kevin G. Hatala; Elizabeth Renner; Jennifer L. Baker; Serena Bianchi; Kallista H. Bernal; Bernard A. Wood (2018). "Pattern and process in hominin brain size evolution are scale-dependent". Proceedings of the Royal Society B: Biological Sciences. 285 (1873): 20172738. doi:10.1098/rspb.2017.2738. PMC 5832710. PMID 29467267.
  349. ^ P. Raia; M. Boggioni; F. Carotenuto; S. Castiglione; M. Di Febbraro; F. Di Vincenzo; M. Melchionna; A. Mondanaro; A. Papini; A. Profico; C. Serio; A. Veneziano; V. A. Vero; L. Rook; C. Meloro; G. Manzi (2018). "Unexpectedly rapid evolution of mandibular shape in hominins". Scientific Reports. 8 (1): Article number 7340. Bibcode:2018NatSR...8.7340R. doi:10.1038/s41598-018-25309-8. PMC 5943523. PMID 29743608.
  350. ^ Marc R. Meyer; Charles Woodward; Amy Tims; Markus Bastir (2018). "Neck function in early hominins and suspensory primates: Insights from the uncinate process". American Journal of Physical Anthropology. 166 (3): 613–637. doi:10.1002/ajpa.23448. PMID 29492962.
  351. ^ Biren A. Patel; Tea Jashashvili; Stephanie H. Bui; Kristian J. Carlson; Nicole L. Griffin; Ian J. Wallace; Caley M. Orr; Randall L. Susman (2018). "Inter-ray variation in metatarsal strength properties in humans and African apes: Implications for inferring bipedal biomechanics in the Olduvai Hominid 8 foot". Journal of Human Evolution. 121: 147–165. doi:10.1016/j.jhevol.2018.02.013. PMID 29764690.
  352. ^ Peter J. Fernández; Carrie S. Mongle; Louise Leakey; Daniel J. Proctor; Caley M. Orr; Biren A. Patel; Sergio Almécija; Matthew W. Tocheri; William L. Jungers (2018). "Evolution and function of the hominin forefoot". Proceedings of the National Academy of Sciences of the United States of America. 115 (35): 8746–8751. doi:10.1073/pnas.1800818115. PMC 6126759. PMID 30104373.
  353. ^ Manuel Domínguez-Rodrigo; Enrique Baquedano (2018). "Distinguishing butchery cut marks from crocodile bite marks through machine learning methods". Scientific Reports. 8 (1): Article number 5786. Bibcode:2018NatSR...8.5786D. doi:10.1038/s41598-018-24071-1. PMC 5893542. PMID 29636550.
  354. ^ Jennifer A. Parkinson (2018). "Revisiting the hunting-versus-scavenging debate at FLK Zinj: A GIS spatial analysis of bone surface modifications produced by hominins and carnivores in the FLK 22 assemblage, Olduvai Gorge, Tanzania". Palaeogeography, Palaeoclimatology, Palaeoecology. 511: 29–51. Bibcode:2018PPP...511...29P. doi:10.1016/j.palaeo.2018.06.044. S2CID 135446336.
  355. ^ Gerard D. Gierliński; Grzegorz Niedźwiedzki; Martin G. Lockley; Athanassios Athanassiou; Charalampos Fassoulas; Zofia Dubicka; Andrzej Boczarowski; Matthew R. Bennett; Per Erik Ahlberg (2017). "Possible hominin footprints from the late Miocene (c. 5.7 Ma) of Crete?". Proceedings of the Geologists' Association. 128 (5–6): 697–710. doi:10.1016/j.pgeola.2017.07.006.
  356. ^ Jeff Meldrum; Esteban Sarmiento (2018). "Comments on possible Miocene hominin footprints". Proceedings of the Geologists' Association. 129 (4): 577–580. doi:10.1016/j.pgeola.2018.05.006. S2CID 134963777.
  357. ^ Mark Grabowski; Kevin G. Hatala; William L. Jungers (2018). "Body mass estimates of the earliest possible hominins and implications for the last common ancestor" (PDF). Journal of Human Evolution. 122: 84–92. doi:10.1016/j.jhevol.2018.05.001. PMID 29910044. S2CID 49271477.
  358. ^ Adam Kuperavage; David Pokrajac; Sakdapong Chavanaves; Robert B. Eckhardt (2018). "Earliest known hominin calcar femorale in Orrorin tugenensis provides further internal anatomical evidence for origin of human bipedal locomotion". The Anatomical Record. 301 (11): 1834–1839. doi:10.1002/ar.23939. PMID 30338643. S2CID 53011326.
  359. ^ Thibaut Caley; Thomas Extier; James A. Collins; Enno Schefuß; Lydie Dupont; Bruno Malaizé; Linda Rossignol; Antoine Souron; Erin L. McClymont; Francisco J. Jimenez-Espejo; Carmen García-Comas; Frédérique Eynaud; Philippe Martinez; Didier M. Roche; Stephan J. Jorry; Karine Charlier; Mélanie Wary; Pierre-Yves Gourves; Isabelle Billy; Jacques Giraudeau (2018). "A two-million-year-long hydroclimatic context for hominin evolution in southeastern Africa" (PDF). Nature. 560 (7716): 76–79. Bibcode:2018Natur.560...76C. doi:10.1038/s41586-018-0309-6. PMID 29988081. S2CID 49668495.
  360. ^ Richard S. Meindl; Morgan E. Chaney; C. Owen Lovejoy (2018). "Early hominids may have been weed species". Proceedings of the National Academy of Sciences of the United States of America. 115 (6): 1244–1249. doi:10.1073/pnas.1719669115. PMC 5819451. PMID 29358388.
  361. ^ Simon J. Maxwell; Philip J. Hopley; Paul Upchurch; Christophe Soligo (2018). "Sporadic sampling, not climatic forcing, drives observed early hominin diversity". Proceedings of the National Academy of Sciences of the United States of America. 115 (19): 4891–4896. doi:10.1073/pnas.1721538115. PMC 5948983. PMID 29686074.
  362. ^ Elaine E. Kozma; Nicole M. Webb; William E. H. Harcourt-Smith; David A. Raichlen; Kristiaan D'Août; Mary H. Brown; Emma M. Finestone; Stephen R. Ross; Peter Aerts; Herman Pontzer (2018). "Hip extensor mechanics and the evolution of walking and climbing capabilities in humans, apes, and fossil hominins". Proceedings of the National Academy of Sciences of the United States of America. 115 (16): 4134–4139. doi:10.1073/pnas.1715120115. PMC 5910817. PMID 29610309.
  363. ^ Amélie Beaudet; Jean Dumoncel; Frikkie de Beer; Stanley Durrleman; Emmanuel Gilissen; Anna Oettlé; Gérard Subsol; John Francis Thackeray; José Braga (2018). "The endocranial shape of Australopithecus africanus: surface analysis of the endocasts of Sts 5 and Sts 60". Journal of Anatomy. 232 (2): 296–303. doi:10.1111/joa.12745. hdl:2263/63900. PMC 5770328. PMID 29148040.
  364. ^ Alexandria Peterson; Elicia F. Abella; Frederick E. Grine; Mark F. Teaford; Peter S. Ungar (2018). "Microwear textures of Australopithecus africanus and Paranthropus robustus molars in relation to paleoenvironment and diet". Journal of Human Evolution. 119: 42–63. doi:10.1016/j.jhevol.2018.02.004. PMID 29685753. S2CID 206143068.
  365. ^ Kornelius Kupczik; Viviana Toro-Ibacache; Gabriele A. Macho (2018). "On the relationship between maxillary molar root shape and jaw kinematics in Australopithecus africanus and Paranthropus robustus". Royal Society Open Science. 5 (8): 180825. Bibcode:2018RSOS....580825K. doi:10.1098/rsos.180825. PMC 6124107. PMID 30225074.
  366. ^ Timothy M. Ryan; Kristian J. Carlson; Adam D. Gordon; Nina Jablonski; Colin N. Shaw; Jay T. Stock (2018). "Human-like hip joint loading in Australopithecus africanus and Paranthropus robustus". Journal of Human Evolution. 121: 12–24. doi:10.1016/j.jhevol.2018.03.008. PMID 29706230. S2CID 14060188.
  367. ^ Tina Lüdecke; Ottmar Kullmer; Ulrike Wacker; Oliver Sandrock; Jens Fiebig; Friedemann Schrenk; Andreas Mulch (2018). "Dietary versatility of Early Pleistocene hominins". Proceedings of the National Academy of Sciences of the United States of America. 115 (52): 13330–13335. Bibcode:2018PNAS..11513330L. doi:10.1073/pnas.1809439115. PMC 6310814. PMID 30530680.
  368. ^ Andrew Sillen; Vincent Balter (2018). "Strontium isotopic aspects of Paranthropus robustus teeth; implications for habitat, residence, and growth". Journal of Human Evolution. 114: 118–130. doi:10.1016/j.jhevol.2017.09.009. PMID 29447754.
  369. ^ Gaokgatlhe M. Tawane; J. Francis Thackeray (2018). "The cranium of Sts 5 ('Mrs Ples') in relation to sexual dimorphism of Australopithecus africanus". South African Journal of Science. 114 (1/2): 13–16. doi:10.17159/sajs.2018/a0249.
  370. ^ Tracy L. Kivell; Rebecca Davenport; Jean-Jacques Hublin; J. Francis Thackeray; Matthew M. Skinner (2018). "Trabecular architecture and joint loading of the proximal humerus in extant hominoids, Ateles, and Australopithecus africanus" (PDF). American Journal of Physical Anthropology. 167 (2): 348–365. doi:10.1002/ajpa.23635. PMID 30129074.
  371. ^ Jeremy M. DeSilva; Corey M. Gill; Thomas C. Prang; Miriam A. Bredella; Zeresenay Alemseged (2018). "A nearly complete foot from Dikika, Ethiopia and its implications for the ontogeny and function of Australopithecus afarensis". Science Advances. 4 (7): eaar7723. Bibcode:2018SciA....4R7723D. doi:10.1126/sciadv.aar7723. PMC 6031372. PMID 29978043.
  372. ^ Chris Robinson; Timothy L. Campbell; Susanne Cote; Darryl J. de Ruiter (2018). "Temporal ranges and ancestry in the hominin fossil record: The case of Australopithecus sediba". South African Journal of Science. 114 (3/4): 92–98. doi:10.17159/sajs.2018/20170327.
  373. ^ Darryl J. De Ruiter; Keely B. Carlson; Juliet K. Brophy; Steven E. Churchill; Kristian J. Carlson; Lee R. Berger (2018). "The skull of Australopithecus sediba" (PDF). PaleoAnthropology. 2018: 56–155. doi:10.4207/PA.2018.ART112 (inactive 28 February 2022).{{cite journal}}: CS1 maint: DOI inactive as of February 2022 (link)
  374. ^ Scott A. Williams; Marc R. Meyer; Sahed Nalla; Daniel García-Martínez; Theirra K. Nalley; Jennifer Eyre; Thomas C. Prang; Markus Bastir; Peter Schmid; Steven E. Churchill; Lee R. Berger (2018). "The vertebrae, ribs, and sternum of Australopithecus sediba" (PDF). PaleoAnthropology. 2018: 156–233. doi:10.4207/PA.2018.ART113 (inactive 28 February 2022).{{cite journal}}: CS1 maint: DOI inactive as of February 2022 (link)
  375. ^ Steven E. Churchill; David J. Green; Elen M. Feuerriegel; Marisa E. Macias; Sandra Matthews; Kristian J. Carlson; Peter Schmid; Lee R. Berger (2018). "The shoulder, arm, and forearm of Australopithecus sediba" (PDF). PaleoAnthropology. 2018: 234–281. doi:10.4207/PA.2018.ART114 (inactive 28 February 2022).{{cite journal}}: CS1 maint: DOI inactive as of February 2022 (link)
  376. ^ Tracey L. Kivell; Steven E. Churchill; Job M. Kibii; Peter Schmid; Lee R. Berger (2018). "The hand of Australopithecus sediba" (PDF). PaleoAnthropology. 2018: 282–333. doi:10.4207/PA.2018.ART115 (inactive 28 February 2022).{{cite journal}}: CS1 maint: DOI inactive as of February 2022 (link)
  377. ^ Steven E. Churchill; Job M. Kibii; Peter Schmid; Nichelle D. Reed; Lee R. Berger (2018). "The pelvis of Australopithecus sediba" (PDF). PaleoAnthropology. 2018: 334–356. doi:10.4207/PA.2018.ART116 (inactive 28 February 2022).{{cite journal}}: CS1 maint: DOI inactive as of February 2022 (link)
  378. ^ Jeremy M. DeSilva; Kristian J. Carlson; Alexander G. Claxton; William E.H. Harcourt-Smith; Ellison J. McNutt; Adam D. Sylvester; Christopher S. Walker; Bernhard Zipfel; Steven E. Churchill; Lee R. Berger (2018). "The anatomy of the lower limb skeleton of Australopithecus sediba" (PDF). PaleoAnthropology. 2018: 357–405. doi:10.4207/PA.2018.ART117 (inactive 28 February 2022).{{cite journal}}: CS1 maint: DOI inactive as of February 2022 (link)
  379. ^ Trenton W. Holliday; Steven E. Churchill; Kristian J. Carlson; Jeremy M. DeSilva; Peter Schmid; Christopher S. Walker; Lee R. Berger (2018). "Body size and proportions of Australopithecus sediba" (PDF). PaleoAnthropology. 2018: 406–422. doi:10.4207/PA.2018.ART118 (inactive 28 February 2022).{{cite journal}}: CS1 maint: DOI inactive as of February 2022 (link)
  380. ^ Amey Y. Zhang; Jeremy M. DeSilva (2018). "Computer animation of the walking mechanics of Australopithecus sediba" (PDF). PaleoAnthropology. 2018: 423–432. doi:10.4207/PA.2018.ART119 (inactive 28 February 2022).{{cite journal}}: CS1 maint: DOI inactive as of February 2022 (link)
  381. ^ R. Hanon; S. Péan; S. Prat (2018). "Reassessment of anthropic modifications on the Early Pleistocene hominin specimen Stw53 (Sterkfontein, South Africa)" (PDF). Bulletins et Mémoires de la Société d'Anthropologie de Paris. 30 (1–2): 49–58. doi:10.3166/bmsap-2018-0013. S2CID 90208809.
  382. ^ Kathleen Kuman; Morris B. Sutton; Travis Rayne Pickering; Jason L.Heaton (2018). "The Oldowan industry from Swartkrans cave, South Africa, and its relevance for the African Oldowan". Journal of Human Evolution. 123: 52–69. doi:10.1016/j.jhevol.2018.06.004. PMID 30097184. S2CID 51957279.
  383. ^ Mohamed Sahnouni; Josep M. Parés; Mathieu Duval; Isabel Cáceres; Zoheir Harichane; Jan van der Made; Alfredo Pérez-González; Salah Abdessadok; Nadia Kandi; Abdelkader Derradji; Mohamed Medig; Kamel Boulaghraif; Sileshi Semaw (2018). "1.9-million- and 2.4-million-year-old artifacts and stone tool–cutmarked bones from Ain Boucherit, Algeria". Science. 362 (6420): 1297–1301. Bibcode:2018Sci...362.1297S. doi:10.1126/science.aau0008. PMID 30498166. S2CID 54166305.
  384. ^ Caroline VanSickle; Zachary Cofran; Daniel García-Martínez; Scott A. Williams; Steven E. Churchill; Lee R. Berger; John Hawks (2018). "Homo naledi pelvic remains from the Dinaledi Chamber, South Africa". Journal of Human Evolution. 125: 122–136. doi:10.1016/j.jhevol.2017.10.001. PMID 29169681. S2CID 2909448.
  385. ^ Debra R. Bolter; John Hawks; Barry Bogin; Noel Cameron (2018). "Palaeodemographics of individuals in Dinaledi Chamber using dental remains". South African Journal of Science. 114 (1/2): 37–42. doi:10.17159/sajs.2018/20170066.
  386. ^ Peter S. Ungar; Lee R. Berger (2018). "Brief communication: Dental microwear and diet of Homo naledi". American Journal of Physical Anthropology. 166 (1): 228–235. doi:10.1002/ajpa.23418. PMID 29399788.
  387. ^ Michael A. Berthaume; Lucas K. Delezene; Kornelius Kupczik (2018). "Dental topography and the diet of Homo naledi" (PDF). Journal of Human Evolution. 118: 14–26. doi:10.1016/j.jhevol.2018.02.006. PMID 29606200.
  388. ^ Ralph L. Holloway; Shawn D. Hurst; Heather M. Garvin; P. Thomas Schoenemann; William B. Vanti; Lee R. Berger; John Hawks (2018). "Endocast morphology of Homo naledi from the Dinaledi Chamber, South Africa". Proceedings of the National Academy of Sciences of the United States of America. 115 (22): 5738–5743. doi:10.1073/pnas.1720842115. PMC 5984505. PMID 29760068.
  389. ^ Joel D. Irish; Shara E. Bailey; Debbie Guatelli-Steinberg; Lucas K. Delezene; Lee R. Berger (2018). "Ancient teeth, phenetic affinities, and African hominins: Another look at where Homo naledi fits in" (PDF). Journal of Human Evolution. 122: 108–123. doi:10.1016/j.jhevol.2018.05.007. PMID 29887210. S2CID 47010223.
  390. ^ Marina C. Elliott; Rolf Quam; Shahed Nalla; Darryl J. de Ruiter; John Hawks; Lee R.Berger (2018). "Description and analysis of three Homo naledi incudes from the Dinaledi Chamber, Rising Star cave (South Africa)". Journal of Human Evolution. 122: 146–155. doi:10.1016/j.jhevol.2018.06.008. PMID 30001870. S2CID 51618301.
  391. ^ Edward J. Odes; Lucas K. Delezene; Patrick S. Randolph-Quinney; Jacqueline S. Smilg; Tanya N. Augustine; Kudakwashe Jakata; Lee R. Berger (2018). "A case of benign osteogenic tumour in Homo naledi: Evidence for peripheral osteoma in the U.W. 101-1142 mandible". International Journal of Paleopathology. 21: 47–55. doi:10.1016/j.ijpp.2017.05.003. PMID 29778414. S2CID 29150977.
  392. ^ Charles P. Egeland; Manuel Domínguez-Rodrigo; Travis Rayne Pickering; Colin G. Menter; Jason L. Heaton (2018). "Hominin skeletal part abundances and claims of deliberate disposal of corpses in the Middle Pleistocene". Proceedings of the National Academy of Sciences of the United States of America. 115 (18): 4601–4606. doi:10.1073/pnas.1718678115. PMC 5939076. PMID 29610322.
  393. ^ Amélie Vialet; Sandrine Prat; Patricia Wilms; Mehmet Cihat Alçiçek (2018). "The Kocabaş hominin (Denizli Basin, Turkey) at the crossroads of Eurasia: New insights from morphometric and cladistic analyses". Comptes Rendus Palevol. 17 (1–2): 17–32. doi:10.1016/j.crpv.2017.11.003.
  394. ^ Simon Neubauer; Philipp Gunz; Louise Leakey; Meave Leakey; Jean-Jacques Hublin; Fred Spoor (2018). "Reconstruction, endocranial form and taxonomic affinity of the early Homo calvaria KNM-ER 42700". Journal of Human Evolution. 121: 25–39. doi:10.1016/j.jhevol.2018.04.005. PMID 29706231. S2CID 14020776.
  395. ^ Michael C. Pante; Jackson K. Njau; Blaire Hensley-Marschand; Trevor L. Keevil; Carmen Martín-Ramos; Renata Franco Peters; Ignacio de la Torre (2018). "The carnivorous feeding behavior of early Homo at HWK EE, Bed II, Olduvai Gorge, Tanzania". Journal of Human Evolution. 120: 215–235. doi:10.1016/j.jhevol.2017.06.005. PMID 28797516. S2CID 206142790.
  396. ^ Deborah L. Cunningham; Ronda R. Graves; Daniel J. Wescott; Robert C. McCarthy (2018). "The effect of ontogeny on estimates of KNM-WT 15000's adult body size". Journal of Human Evolution. 121: 119–127. doi:10.1016/j.jhevol.2018.04.002. PMID 29754743. S2CID 21680362.
  397. ^ Neil T. Roach; Andrew Du; Kevin G. Hatala; Kelly R. Ostrofsky; Jonathan S. Reeves; David R. Braun; John W.K. Harris; Anna K. Behrensmeyer; Brian G. Richmond (2018). "Pleistocene animal communities of a 1.5 million-year-old lake margin grassland and their relationship to Homo erectus paleoecology". Journal of Human Evolution. 122: 70–83. doi:10.1016/j.jhevol.2018.04.014. PMID 29970233. S2CID 49681563.
  398. ^ Darya Presnyakova; David R. Braun; Nicholas J. Conard; Craig Feibel; John W.K. Harris; Cornel M. Pop; Stefan Schlager; Will Archer (2018). "Site fragmentation, hominin mobility and LCT variability reflected in the early Acheulean record of the Okote Member, at Koobi Fora, Kenya". Journal of Human Evolution. 125: 159–180. doi:10.1016/j.jhevol.2018.07.008. PMID 30268405. S2CID 52893559.
  399. ^ Ashley S. Hammond; Sergio Almécija; Yosief Libsekal; Lorenzo Rook; Roberto Macchiarelli (2018). "A partial Homo pelvis from the Early Pleistocene of Eritrea". Journal of Human Evolution. 123: 109–128. doi:10.1016/j.jhevol.2018.06.010. PMID 30017175. S2CID 51676199.
  400. ^ Song Xing; Kristian J. Carlson; Pianpian Wei; Jianing He; Wu Liu (2018). "Morphology and structure of Homo erectus humeri from Zhoukoudian, Locality 1". PeerJ. 6: e4279. doi:10.7717/peerj.4279. PMC 5777375. PMID 29372121.
  401. ^ Song Xing; María Martinón-Torres; José María Bermúdez de Castro (2018). "The fossil teeth of the Peking Man". Scientific Reports. 8 (1): Article number 2066. Bibcode:2018NatSR...8.2066X. doi:10.1038/s41598-018-20432-y. PMC 5794973. PMID 29391445.
  402. ^ Feng Li; Christopher J. Bae; Christopher B. Ramsey; Fuyou Chen; Xing Gao (2018). "Re-dating Zhoukoudian Upper Cave, northern China and its regional significance". Journal of Human Evolution. 121: 170–177. doi:10.1016/j.jhevol.2018.04.014. PMID 29778246. S2CID 49681563.
  403. ^ Yanfen Kong; Chenglong Deng; Wu Liu; Xiujie Wu; Shuwen Pei; Lu Sun; Junyi Ge; Liang Yi; Rixiang Zhu (2018). "Magnetostratigraphic dating of the hominin occupation of Bailong Cave, central China". Scientific Reports. 8 (1): Article number 9699. Bibcode:2018NatSR...8.9699K. doi:10.1038/s41598-018-28065-x. PMC 6018768. PMID 29946102.
  404. ^ Zhaoyu Zhu; Robin Dennell; Weiwen Huang; Yi Wu; Shifan Qiu; Shixia Yang; Zhiguo Rao; Yamei Hou; Jiubing Xie; Jiangwei Han; Tingping Ouyang (2018). "Hominin occupation of the Chinese Loess Plateau since about 2.1 million years ago". Nature. 559 (7715): 608–612. Bibcode:2018Natur.559..608Z. doi:10.1038/s41586-018-0299-4. PMID 29995848. S2CID 49670311.
  405. ^ Xuefeng Sun; Huayu Lu; Shejiang Wang; Xinghua Xu; Qingxuan Zeng; Xuehe Lu; Chengqiu Lu; Wenchao Zhang; Xiaojian Zhang; Robin Dennell (2018). "Hominin distribution in glacial-interglacial environmental changes in the Qinling Mountains range, central China". Quaternary Science Reviews. 198: 37–55. Bibcode:2018QSRv..198...37S. doi:10.1016/j.quascirev.2018.08.012. S2CID 135289382.
  406. ^ Amélie Vialet; Mario Modesto-Mata; María Martinón-Torres; Marina Martínez de Pinillos; José-María Bermúdez de Castro (2018). "A reassessment of the Montmaurin-La Niche mandible (Haute Garonne, France) in the context of European Pleistocene human evolution". PLOS ONE. 13 (1): e0189714. Bibcode:2018PLoSO..1389714V. doi:10.1371/journal.pone.0189714. PMC 5770020. PMID 29337994.
  407. ^ Montserrat Sanz; Nohemi Sala; Joan Daura; Ana Pantoja-Pérez; Elena Santos; João Zilhão; Juan Luis Arsuaga (2018). "Taphonomic inferences about Middle Pleistocene hominins: The human cranium of Gruta da Aroeira (Portugal)". American Journal of Physical Anthropology. 167 (3): 615–627. doi:10.1002/ajpa.23689. PMID 30159875. S2CID 52119598.
  408. ^ Katharine MacDonald (2018). "Fire-free hominin strategies for coping with cool winter temperatures in north-western Europe from before 800,000 to circa 400,000 years ago" (PDF). PaleoAnthropology. 2018: 7–26. doi:10.4207/PA.2018.ART109 (inactive 28 February 2022).{{cite journal}}: CS1 maint: DOI inactive as of February 2022 (link)
  409. ^ R. Bernhart Owen; Veronica M. Muiruri; Tim K. Lowenstein; Robin W. Renaut; Nathan Rabideaux; Shangde Luo; Alan L. Deino; Mark J. Sier; Guillaume Dupont-Nivet; Emma P. McNulty; Kennie Leet; Andrew Cohen; Christopher Campisano; Daniel Deocampo; Chuan-Chou Shen; Anne Billingsley; Anthony Mbuthia (2018). "Progressive aridification in East Africa over the last half million years and implications for human evolution". Proceedings of the National Academy of Sciences of the United States of America. 115 (44): 11174–11179. Bibcode:2018PNAS..11511174B. doi:10.1073/pnas.1801357115. PMC 6217406. PMID 30297412.
  410. ^ Alison S. Brooks; John E. Yellen; Richard Potts; Anna K. Behrensmeyer; Alan L. Deino; David E. Leslie; Stanley H. Ambrose; Jeffrey R. Ferguson; Francesco d'Errico; Andrew M. Zipkin; Scott Whittaker; Jeffrey Post; Elizabeth G. Veatch; Kimberly Foecke; Jennifer B. Clark (2018). "Long-distance stone transport and pigment use in the earliest Middle Stone Age". Science. 360 (6384): 90–94. Bibcode:2018Sci...360...90B. doi:10.1126/science.aao2646. PMID 29545508. S2CID 14051717.
  411. ^ Richard Potts; Anna K. Behrensmeyer; J. Tyler Faith; Christian A. Tryon; Alison S. Brooks; John E. Yellen; Alan L. Deino; Rahab Kinyanjui; Jennifer B. Clark; Catherine Haradon; Naomi E. Levin; Hanneke J. M. Meijer; Elizabeth G. Veatch; R. Bernhart Owen; Robin W. Renaut (2018). "Environmental dynamics during the onset of the Middle Stone Age in eastern Africa". Science. 360 (6384): 86–90. Bibcode:2018Sci...360...86P. doi:10.1126/science.aao2200. PMID 29545506. S2CID 206662634.
  412. ^ Alan L. Deino; Anna K. Behrensmeyer; Alison S. Brooks; John E. Yellen; Warren D. Sharp; Richard Potts (2018). "Chronology of the Acheulean to Middle Stone Age transition in eastern Africa". Science. 360 (6384): 95–98. Bibcode:2018Sci...360...95D. doi:10.1126/science.aao2216. PMID 29545510. S2CID 3895578.
  413. ^ Justin Bradfield (2018). "Identifying animal taxa used to manufacture bone tools during the Middle Stone Age at Sibudu, South Africa: Results of a CT-rendered histological analysis". PLOS ONE. 13 (11): e0208319. Bibcode:2018PLoSO..1308319B. doi:10.1371/journal.pone.0208319. PMC 6264865. PMID 30496272.
  414. ^ Ceri Shipton; James Blinkhorn; Paul S. Breeze; Patrick Cuthbertson; Nick Drake; Huw S. Groucutt; Richard P. Jennings; Ash Parton; Eleanor M. L. Scerri; Abdullah Alsharekh; Michael D. Petraglia (2018). "Acheulean technology and landscape use at Dawadmi, central Arabia". PLOS ONE. 13 (7): e0200497. Bibcode:2018PLoSO..1300497S. doi:10.1371/journal.pone.0200497. PMC 6063418. PMID 30052630.
  415. ^ Eleanor M. L. Scerri; Ceri Shipton; Laine Clark-Balzan; Marine Frouin; Jean-Luc Schwenninger; Huw S. Groucutt; Paul S. Breeze; Ash Parton; James Blinkhorn; Nick A. Drake; Richard Jennings; Patrick Cuthbertson; Abdulaziz Al Omari; Abdullah M. Alsharekh; Michael D. Petraglia (2018). "The expansion of later Acheulean hominins into the Arabian Peninsula". Scientific Reports. 8 (1): Article number 17165. Bibcode:2018NatSR...817165S. doi:10.1038/s41598-018-35242-5. PMC 6265249. PMID 30498259.
  416. ^ Kumar Akhilesh; Shanti Pappu; Haresh M. Rajapara; Yanni Gunnell; Anil D. Shukla; Ashok K. Singhvi (2018). "Early Middle Palaeolithic culture in India around 385–172 ka reframes Out of Africa models". Nature. 554 (7690): 97–101. Bibcode:2018Natur.554...97A. doi:10.1038/nature25444. PMID 29388951. S2CID 4447452.
  417. ^ T. Ingicco; G. D. van den Bergh; C. Jago-on; J.-J. Bahain; M. G. Chacón; N. Amano; H. Forestier; C. King; K. Manalo; S. Nomade; A. Pereira; M. C. Reyes; A.-M. Sémah; Q. Shao; P. Voinchet; C. Falguères; P. C. H. Albers; M. Lising; G. Lyras; D. Yurnaldi; P. Rochette; A. Bautista; J. de Vos (2018). "Earliest known hominin activity in the Philippines by 709 thousand years ago". Nature. 557 (7704): 233–237. Bibcode:2018Natur.557..233I. doi:10.1038/s41586-018-0072-8. PMID 29720661. S2CID 13742336.
  418. ^ Steven R. Holen; Thomas A. Deméré; Daniel C. Fisher; Richard Fullagar; James B. Paces; George T. Jefferson; Jared M. Beeton; Richard A. Cerutti; Adam N. Rountrey; Lawrence Vescera; Kathleen A. Holen (2017). "A 130,000-year-old archaeological site in southern California, USA". Nature. 544 (7651): 479–483. Bibcode:2017Natur.544..479H. doi:10.1038/nature22065. PMID 28447646.
  419. ^ Joseph V. Ferraro; Katie M. Binetti; Logan A. Wiest; Donald Esker; Lori E. Baker; Steven L. Forman (2018). "Contesting early archaeology in California". Nature. 554 (7691): E1–E2. Bibcode:2018Natur.554E...1F. doi:10.1038/nature25165. PMID 29420468. S2CID 205263114.
  420. ^ Steven R. Holen; Thomas A. Deméré; Daniel C. Fisher; Richard Fullagar; James B. Paces; George T. Jefferson; Jared M. Beeton; Richard A. Cerutti; Adam N. Rountrey; Lawrence Vescera; Kathleen A. Holen (2018). "Holen et al. reply". Nature. 554 (7691): E3. Bibcode:2018Natur.554E...3H. doi:10.1038/nature25166. PMID 29420475. S2CID 4466451.
  421. ^ Luc Doyon; Zhanyang Li; Hao Li; Francesco d'Errico (2018). "Discovery of circa 115,000-year-old bone retouchers at Lingjing, Henan, China". PLOS ONE. 13 (3): e0194318. Bibcode:2018PLoSO..1394318D. doi:10.1371/journal.pone.0194318. PMC 5847243. PMID 29529079.
  422. ^ Abdeljalil Bouzouggar; Louise T. Humphrey; Nick Barton; Simon A. Parfitt; Laine Clark Balzan; Jean-Luc Schwenninger; Mohammed Abdeljalil El Hajraoui; Roland Nespoulet; Silvia M. Bello (2018). "90,000 year-old specialised bone technology in the Aterian Middle Stone Age of North Africa". PLOS ONE. 13 (10): e0202021. Bibcode:2018PLoSO..1302021B. doi:10.1371/journal.pone.0202021. PMC 6169849. PMID 30281602.
  423. ^ Mathieu Duval; Rainer Grün; Josep M. Parés; Laura Martín-Francés; Isidoro Campaña; Jordi Rosell; Qingfeng Shao; Juan Luis Arsuaga; Eudald Carbonell; José María Bermúdez de Castro (2018). "The first direct ESR analysis of a hominin tooth from Atapuerca Gran Dolina TD-6 (Spain) supports the antiquity of Homo antecessor" (PDF). Quaternary Geochronology. 47: 120–137. doi:10.1016/j.quageo.2018.05.001.
  424. ^ Laura Martín-Francés; María Martinón-Torres; Marina Martínez de Pinillos; Cecilia García-Campos; Mario Modesto-Mata; Clément Zanolli; Laura Rodríguez; José María Bermúdez de Castro (2018). "Tooth crown tissue proportions and enamel thickness in Early Pleistocene Homo antecessor molars (Atapuerca, Spain)". PLOS ONE. 13 (10): e0203334. Bibcode:2018PLoSO..1303334M. doi:10.1371/journal.pone.0203334. PMC 6169863. PMID 30281589.
  425. ^ Flavio Altamura; Matthew R. Bennett; Kristiaan D'Août; Sabine Gaudzinski-Windheuser; Rita T. Melis; Sally C. Reynolds; Margherita Mussi (2018). "Archaeology and ichnology at Gombore II-2, Melka Kunture, Ethiopia: everyday life of a mixed-age hominin group 700,000 years ago". Scientific Reports. 8 (1): Article number 2815. Bibcode:2018NatSR...8.2815A. doi:10.1038/s41598-018-21158-7. PMC 5809588. PMID 29434269.
  426. ^ Ricardo Miguel Godinho; Penny Spikins; Paul O'Higgins (2018). "Supraorbital morphology and social dynamics in human evolution". Nature Ecology & Evolution. 2 (6): 956–961. doi:10.1038/s41559-018-0528-0. PMID 29632349. S2CID 4698765.
  427. ^ Sharon R. Browning; Brian L. Browning; Ying Zhou; Serena Tucci; Joshua M. Akey (2018). "Analysis of human sequence data reveals two pulses of archaic Denisovan admixture". Cell. 173 (1): 53–61.e9. doi:10.1016/j.cell.2018.02.031. PMC 5866234. PMID 29551270.
  428. ^ Viviane Slon; Fabrizio Mafessoni; Benjamin Vernot; Cesare de Filippo; Steffi Grote; Bence Viola; Mateja Hajdinjak; Stéphane Peyrégne; Sarah Nagel; Samantha Brown; Katerina Douka; Tom Higham; Maxim B. Kozlikin; Michael V. Shunkov; Anatoly P. Derevianko; Janet Kelso; Matthias Meyer; Kay Prüfer; Svante Pääbo (2018). "The genome of the offspring of a Neanderthal mother and a Denisovan father". Nature. 561 (7721): 113–116. Bibcode:2018Natur.561..113S. doi:10.1038/s41586-018-0455-x. PMC 6130845. PMID 30135579.
  429. ^ José-Miguel Carretero; Laura Rodríguez; Rebeca García-González; Rolf-Michael Quam; Juan-Luis Arsuaga (2018). "Exploring bone volume and skeletal weight in the Middle Pleistocene humans from the Sima de los Huesos site (Sierra de Atapuerca, Spain)". Journal of Anatomy. 233 (6): 740–754. doi:10.1111/joa.12886. PMC 6231173. PMID 30280382.
  430. ^ Bruce L. Hardy; Marie-Hélène Moncel; Jackie Despriée; Gilles Courcimault; Pierre Voinchet (2018). "Middle Pleistocene hominin behavior at the 700ka Acheulean site of la Noira (France)". Quaternary Science Reviews. 199: 60–82. Bibcode:2018QSRv..199...60H. doi:10.1016/j.quascirev.2018.09.013. S2CID 134587527.
  431. ^ Daniel García-Martínez; Nicole Torres-Tamayo; Isabel Torres-Sánchez; Francisco García-Río; Antonio Rosas; Markus Bastir (2018). "Ribcage measurements indicate greater lung capacity in Neanderthals and Lower Pleistocene hominins compared to modern humans". Communications Biology. 1: Article number 117. doi:10.1038/s42003-018-0125-4. PMC 6123625. PMID 30271997.
  432. ^ Biancamaria Aranguren; Anna Revedin; Nicola Amico; Fabio Cavulli; Gianna Giachi; Stefano Grimaldi; Nicola Macchioni; Fabio Santaniello (2018). "Wooden tools and fire technology in the early Neanderthal site of Poggetti Vecchi (Italy)". Proceedings of the National Academy of Sciences of the United States of America. 115 (9): 2054–2059. doi:10.1073/pnas.1716068115. PMC 5834685. PMID 29432163.
  433. ^ Joseba Rios-Garaizar; Oriol López-Bultó; Eneko Iriarte; Carlos Pérez-Garrido; Raquel Piqué; Arantza Aranburu; María José Iriarte-Chiapusso; Illuminada Ortega-Cordellat; Laurence Bourguignon; Diego Garate; Iñaki Libano (2018). "A Middle Palaeolithic wooden digging stick from Aranbaltza III, Spain". PLOS ONE. 13 (3): e0195044. Bibcode:2018PLoSO..1395044R. doi:10.1371/journal.pone.0195044. PMC 5874079. PMID 29590205.
  434. ^ D. L. Hoffmann; C. D. Standish; M. García-Diez; P. B. Pettitt; J. A. Milton; J. Zilhão; J. J. Alcolea-González; P. Cantalejo-Duarte; H. Collado; R. de Balbín; M. Lorblanchet; J. Ramos-Muñoz; G.-Ch. Weniger; A. W. G. Pike (2018). "U-Th dating of carbonate crusts reveals Neandertal origin of Iberian cave art". Science. 359 (6378): 912–915. Bibcode:2018Sci...359..912H. doi:10.1126/science.aap7778. PMID 29472483. S2CID 206664238.
  435. ^ David G. Pearce; Adelphine Bonneau (2018). "Trouble on the dating scene". Nature Ecology & Evolution. 2 (6): 925–926. doi:10.1038/s41559-018-0540-4. PMID 29632350. S2CID 4711688.
  436. ^ Dirk L. Hoffmann; Christopher D. Standish; Alistair W. G. Pike; Marcos García-Diez; Paul B. Pettitt; Diego E. Angelucci; Valentín Villaverde; Josefina Zapata; James A. Milton; Javier Alcolea-González; Pedro Cantalejo-Duarte; Hipolito Collado; Rodrigo de Balbín; Michel Lorblanchet; José Ramos-Muñoz; Gerd-Christian Weniger; João Zilhão (2018). "Dates for Neanderthal art and symbolic behaviour are reliable". Nature Ecology & Evolution. 2 (7): 1044–1045. doi:10.1038/s41559-018-0598-z. hdl:11572/210293. PMID 29942018. S2CID 49404741.
  437. ^ Maxime Aubert; Adam Brumm; Jillian Huntley (2018). "Early dates for 'Neanderthal cave art' may be wrong". Journal of Human Evolution. 125: 215–217. doi:10.1016/j.jhevol.2018.08.004. PMID 30173883. S2CID 52145541.
  438. ^ Dirk L. Hoffmann; Christopher D. Standish; Marcos García-Diez; Paul B. Pettitt; James A. Milton; João Zilhão; Javier J. Alcolea-González; Pedro Cantalejo-Duarte; Hipolito Collado; Rodrigo de Balbín; Michel Lorblanchet; Jose Ramos-Muñoz; Gerd-Christian Weniger; Alistair W.G. Pike (2019). "Response to Aubert et al.'s reply 'Early dates for 'Neanderthal cave art' may be wrong' [J. Hum. Evol. 125 (2018), 215–217]". Journal of Human Evolution. 135: Article 102644. doi:10.1016/j.jhevol.2019.102644. S2CID 202017223.
  439. ^ Ludovic Slimak; Jan Fietzke; Jean-Michel Geneste; Roberto Ontañón (2018). "Comment on "U-Th dating of carbonate crusts reveals Neandertal origin of Iberian cave art"". Science. 361 (6408): eaau1371. doi:10.1126/science.aau1371. PMID 30237321. S2CID 52309952.
  440. ^ D. L. Hoffmann; C. D. Standish; M. García-Diez; P. B. Pettitt; J. A. Milton; J. Zilhão; J. J. Alcolea-González; P. Cantalejo-Duarte; H. Collado; R. de Balbín; M. Lorblanchet; J. Ramos-Muñoz; G.-Ch. Weniger; A. W. G. Pike (2018). "Response to Comment on "U-Th dating of carbonate crusts reveals Neandertal origin of Iberian cave art"". Science. 362 (6411): eaau1736. doi:10.1126/science.aau1736. PMID 30309914. S2CID 52966370.
  441. ^ Randall White; Gerhard Bosinski; Raphaëlle Bourrillon; Jean Clottes; Margaret W. Conkey; Soledad Corchón Rodriguez; Miguel Cortés-Sánchez; Marco de la Rasilla Vives; Brigitte Delluc; Gilles Delluc; Valérie Feruglio; Harald Floss; Pascal Foucher; Carole Fritz; Oscar Fuentes; Diego Garate; Jesús González Gómez; Manuel R. González-Morales; María González-Pumariega Solis; Marc Groenen; Jacques Jaubert; María Aránzazu Martinez-Aguirre; María-Ángeles Medina Alcaide; Oscar Moro Abadia; Roberto Ontañón Peredo; Elena Paillet-Man-Estier; Patrick Paillet; Stéphane Petrognani; Romain Pigeaud; Geneviève Pinçon; Frédéric Plassard; Sergio Ripoll López; Olivia Rivero Vilá; Eric Robert; Aitor Ruiz-Redondo; Juan F. Ruiz López; Cristina San Juan-Foucher; José Luis Sanchidrián Torti; Georges Sauvet; María Dolores Simón-Vallejo; Gilles Tosello; Pilar Utrilla; Denis Vialou; Mark D. Willis (2020). "Still no archaeological evidence that Neanderthals created Iberian cave art". Journal of Human Evolution. 144: Article 102640. doi:10.1016/j.jhevol.2019.102640. S2CID 208305629.
  442. ^ Dirk L. Hoffmann; Christopher D. Standish; Marcos García-Diez; Paul B. Pettitt; James A. Milton; João Zilhão; Javier J. Alcolea-González; Pedro Cantalejo-Duarte; Hipolito Collado; Rodrigo de Balbín; Michel Lorblanchet; Jose Ramos-Muñoz; Gerd-Christian Weniger; Alistair W.G. Pike (2020). "Response to White et al.'s reply: 'Still no archaeological evidence that Neanderthals created Iberian cave art' [J. Hum. Evol. (2020) 102640]". Journal of Human Evolution. 144: Article 102810. doi:10.1016/j.jhevol.2020.102810. PMID 32451090. S2CID 218895333.
  443. ^ Dirk L. Hoffmann; Diego E. Angelucci; Valentín Villaverde; Josefina Zapata; João Zilhão (2018). "Symbolic use of marine shells and mineral pigments by Iberian Neandertals 115,000 years ago". Science Advances. 4 (2): eaar5255. Bibcode:2018SciA....4.5255H. doi:10.1126/sciadv.aar5255. PMC 5833998. PMID 29507889.
  444. ^ Mateja Hajdinjak; Qiaomei Fu; Alexander Hübner; Martin Petr; Fabrizio Mafessoni; Steffi Grote; Pontus Skoglund; Vagheesh Narasimham; Hélène Rougier; Isabelle Crevecoeur; Patrick Semal; Marie Soressi; Sahra Talamo; Jean-Jacques Hublin; Ivan Gušić; Željko Kućan; Pavao Rudan; Liubov V. Golovanova; Vladimir B. Doronichev; Cosimo Posth; Johannes Krause; Petra Korlević; Sarah Nagel; Birgit Nickel; Montgomery Slatkin; Nick Patterson; David Reich; Kay Prüfer; Matthias Meyer; Svante Pääbo; Janet Kelso (2018). "Reconstructing the genetic history of late Neanderthals". Nature. 555 (7698): 652–656. Bibcode:2018Natur.555..652H. doi:10.1038/nature26151. PMC 6485383. PMID 29562232.
  445. ^ Marylène Patou-Mathis; Ivor Karavanić; Fred H. Smith (2018). "The evidence from Vindija Cave (Croatia) reveals diversity of Neandertal behaviour in Europe". Quaternary International. 494: 314–326. Bibcode:2018QuInt.494..314P. doi:10.1016/j.quaint.2018.06.023. S2CID 134508237.
  446. ^ Stephen Wroe; William C. H. Parr; Justin A. Ledogar; Jason Bourke; Samuel P. Evans; Luca Fiorenza; Stefano Benazzi; Jean-Jacques Hublin; Chris Stringer; Ottmar Kullmer; Michael Curry; Todd C. Rae; Todd R. Yokley (2018). "Computer simulations show that Neanderthal facial morphology represents adaptation to cold and high energy demands, but not heavy biting". Proceedings of the Royal Society B: Biological Sciences. 285 (1876): 20180085. doi:10.1098/rspb.2018.0085. PMC 5904316. PMID 29618551.
  447. ^ Rachael C. Bible; A. Townsend Peterson (2018). "Compatible ecological niche signals between biological and archaeological datasets for late-surviving Neandertals". American Journal of Physical Anthropology. 166 (4): 968–974. doi:10.1002/ajpa.23482. PMID 29664998.
  448. ^ Sabine Gaudzinski-Windheuser; Elisabeth S. Noack; Eduard Pop; Constantin Herbst; Johannes Pfleging; Jonas Buchli; Arne Jacob; Frieder Enzmann; Lutz Kindler; Radu Iovita; Martin Street; Wil Roebroeks (2018). "Evidence for close-range hunting by last interglacial Neanderthals". Nature Ecology & Evolution. 2 (7): 1087–1092. doi:10.1038/s41559-018-0596-1. PMID 29942012. S2CID 49414561.
  449. ^ D. Wolf; T. Kolb; M. Alcaraz-Castaño; S. Heinrich; P. Baumgart; R. Calvo; J. Sánchez; K. Ryborz; I. Schäfer; M. Bliedtner; R. Zech; L. Zöller; D. Faust (2018). "Climate deteriorations and Neanderthal demise in interior Iberia". Scientific Reports. 8 (1): Article number 7048. Bibcode:2018NatSR...8.7048W. doi:10.1038/s41598-018-25343-6. PMC 5935692. PMID 29728579.
  450. ^ J.S. Carrión; J. Ochando; S. Fernández; R. Blasco; J. Rosell; M. Munuera; G. Amorós; I. Martín-Lerma; S. Finlayson; F. Giles; R. Jennings; G. Finlayson; F. Giles-Pacheco; J. Rodríguez-Vidal; C. Finlayson (2018). "Last Neanderthals in the warmest refugium of Europe: Palynological data from Vanguard Cave" (PDF). Review of Palaeobotany and Palynology. 259: 63–80. doi:10.1016/j.revpalbo.2018.09.007. S2CID 135278171.
  451. ^ Asier Gómez-Olivencia; Nohemi Sala; Carmen Núñez-Lahuerta; Alfred Sanchis; Mikel Arlegi; Joseba Rios-Garaizar (2018). "First data of Neandertal bird and carnivore exploitation in the Cantabrian Region (Axlor; Barandiaran excavations; Dima, Biscay, Northern Iberian Peninsula)". Scientific Reports. 8 (1): Article number 10551. Bibcode:2018NatSR...810551G. doi:10.1038/s41598-018-28377-y. PMC 6043621. PMID 30002396.
  452. ^ A. C. Sorensen; E. Claud; M. Soressi (2018). "Neandertal fire-making technology inferred from microwear analysis". Scientific Reports. 8 (1): Article number 10065. Bibcode:2018NatSR...810065S. doi:10.1038/s41598-018-28342-9. PMC 6053370. PMID 30026576.
  453. ^ Fotios Alexandros Karakostis; Gerhard Hotz; Vangelis Tourloukis; Katerina Harvati (2018). "Evidence for precision grasping in Neandertal daily activities". Science Advances. 4 (9): eaat2369. Bibcode:2018SciA....4.2369K. doi:10.1126/sciadv.aat2369. PMC 6157967. PMID 30263956.
  454. ^ Asier Gómez-Olivencia; Alon Barash; Daniel García-Martínez; Mikel Arlegi; Patricia Kramer; Markus Bastir; Ella Been (2018). "3D virtual reconstruction of the Kebara 2 Neandertal thorax". Nature Communications. 9 (1): Article number 4387. Bibcode:2018NatCo...9.4387G. doi:10.1038/s41467-018-06803-z. PMC 6207772. PMID 30377294.
  455. ^ Anna E. Goldfield; Ross Booton; John M. Marston (2018). "Modeling the role of fire and cooking in the competitive exclusion of Neanderthals". Journal of Human Evolution. 124: 91–104. doi:10.1016/j.jhevol.2018.07.006. PMID 30177445. S2CID 52147357.
  456. ^ Michael Staubwasser; Virgil Drăgușin; Bogdan P. Onac; Sergey Assonov; Vasile Ersek; Dirk L. Hoffmann; Daniel Veres (2018). "Impact of climate change on the transition of Neanderthals to modern humans in Europe". Proceedings of the National Academy of Sciences of the United States of America. 115 (37): 9116–9121. Bibcode:2018PNAS..115.9116S. doi:10.1073/pnas.1808647115. PMC 6140518. PMID 30150388.
  457. ^ Brad Gravina; François Bachellerie; Solène Caux; Emmanuel Discamps; Jean-Philippe Faivre; Aline Galland; Alexandre Michel; Nicolas Teyssandier; Jean-Guillaume Bordes (2018). "No reliable evidence for a Neanderthal-Châtelperronian association at La Roche-à-Pierrot, Saint-Césaire". Scientific Reports. 8 (1): Article number 15134. Bibcode:2018NatSR...815134G. doi:10.1038/s41598-018-33084-9. PMC 6181958. PMID 30310091.
  458. ^ Takanori Kochiyama; Naomichi Ogihara; Hiroki C. Tanabe; Osamu Kondo; Hideki Amano; Kunihiro Hasegawa; Hiromasa Suzuki; Marcia S. Ponce de León; Christoph P. E. Zollikofer; Markus Bastir; Chris Stringer; Norihiro Sadato; Takeru Akazawa (2018). "Reconstructing the Neanderthal brain using computational anatomy". Scientific Reports. 8 (1): Article number 6296. Bibcode:2018NatSR...8.6296K. doi:10.1038/s41598-018-24331-0. PMC 5919901. PMID 29700382.
  459. ^ Tanya M. Smith; Christine Austin; Daniel R. Green; Renaud Joannes-Boyau; Shara Bailey; Dani Dumitriu; Stewart Fallon; Rainer Grün; Hannah F. James; Marie-Hélène Moncel; Ian S. Williams; Rachel Wood; Manish Arora (2018). "Wintertime stress, nursing, and lead exposure in Neanderthal children". Science Advances. 4 (10): eaau9483. Bibcode:2018SciA....4.9483S. doi:10.1126/sciadv.aau9483. PMC 6209393. PMID 30402544.
  460. ^ Clément Zanolli; María Martinón-Torres; Federico Bernardini; Giovanni Boschian; Alfredo Coppa; Diego Dreossi; Lucia Mancini; Marina Martínez de Pinillos; Laura Martín-Francés; José María Bermúdez de Castro; Carlo Tozzi; Claudio Tuniz; Roberto Macchiarelli (2018). "The Middle Pleistocene (MIS 12) human dental remains from Fontana Ranuccio (Latium) and Visogliano (Friuli-Venezia Giulia), Italy. A comparative high resolution endostructural assessment". PLOS ONE. 13 (10): e0189773. Bibcode:2018PLoSO..1389773Z. doi:10.1371/journal.pone.0189773. PMC 6169847. PMID 30281595.
  461. ^ David Enard; Dmitri A. Petrov (2018). "Evidence that RNA viruses drove adaptive introgression between Neanderthals and modern humans". Cell. 175 (2): 360–371.e13. doi:10.1016/j.cell.2018.08.034. PMC 6176737. PMID 30290142.
  462. ^ Judith Beier; Nils Anthes; Joachim Wahl; Katerina Harvati (2018). "Similar cranial trauma prevalence among Neanderthals and Upper Palaeolithic modern humans". Nature. 563 (7733): 686–690. Bibcode:2018Natur.563..686B. doi:10.1038/s41586-018-0696-8. PMID 30429606. S2CID 53306963.
  463. ^ S. Prat; S. Péan; L. Crépin; S. Puaud; D.G. Drucker; M. Lázničková-Galetová; J. Van der Plicht; H. Valladas; C. Verna; M. Patou-Mathis; M. Lebon; A. Yanevich (2018). "The first anatomically modern humans from South-Eastern Europe. Contributions from the Buran-Kaya III Site (Crimea)". Bulletins et Mémoires de la Société d'Anthropologie de Paris. 30 (3–4): 169–179. doi:10.3166/bmsap-2018-0032.
  464. ^ Irene Esteban; Curtis W. Marean; Erich C. Fisher; Panagiotis Karkanas; Dan Cabanes; Rosa M. Albert (2018). "Phytoliths as an indicator of early modern humans plant gathering strategies, fire fuel and site occupation intensity during the Middle Stone Age at Pinnacle Point 5-6 (south coast, South Africa)". PLOS ONE. 13 (6): e0198558. Bibcode:2018PLoSO..1398558E. doi:10.1371/journal.pone.0198558. PMC 5986156. PMID 29864147.
  465. ^ Henry F. Lamb; C. Richard Bates; Charlotte L. Bryant; Sarah J. Davies; Dei G. Huws; Michael H. Marshall; Helen M. Roberts (2018). "150,000-year palaeoclimate record from northern Ethiopia supports early, multiple dispersals of modern humans from Africa". Scientific Reports. 8 (1): Article number 1077. Bibcode:2018NatSR...8.1077L. doi:10.1038/s41598-018-19601-w. PMC 5773494. PMID 29348464.
  466. ^ Eleanor M.L. Scerri; Mark G. Thomas; Andrea Manica; Philipp Gunz; Jay T. Stock; Chris Stringer; Matt Grove; Huw S. Groucutt; Axel Timmermann; G. Philip Rightmire; Francesco d'Errico; Christian A. Tryon; Nick A. Drake; Alison S. Brooks; Robin W. Dennell; Richard Durbin; Brenna M. Henn; Julia Lee-Thorp; Peter deMenocal; Michael D. Petraglia; Jessica C. Thompson; Aylwyn Scally; Lounès Chikhi (2018). "Did our species evolve in subdivided populations across Africa, and why does it matter?". Trends in Ecology & Evolution. 33 (8): 582–594. doi:10.1016/j.tree.2018.05.005. PMC 6092560. PMID 30007846.
  467. ^ Patrick Roberts; Brian A. Stewart (2018). "Defining the 'generalist specialist' niche for Pleistocene Homo sapiens". Nature Human Behaviour. 2 (8): 542–550. doi:10.1038/s41562-018-0394-4. PMID 31209320. S2CID 51881319.
  468. ^ Simon Neubauer; Jean-Jacques Hublin; Philipp Gunz (2018). "The evolution of modern human brain shape". Science Advances. 4 (1): eaao5961. Bibcode:2018SciA....4.5961N. doi:10.1126/sciadv.aao5961. PMC 5783678. PMID 29376123.
  469. ^ Charles W. Helm; Richard T. McCrea; Hayley C. Cawthra; Martin G. Lockley; Richard M. Cowling; Curtis W. Marean; Guy H. H. Thesen; Tammy S. Pigeon; Sinèad Hattingh (2018). "A new Pleistocene hominin tracksite from the Cape south coast, South Africa". Scientific Reports. 8 (1): Article number 3772. Bibcode:2018NatSR...8.3772H. doi:10.1038/s41598-018-22059-5. PMC 5830700. PMID 29491482.
  470. ^ Finn A. Viehberg; Janna Just; Jonathan R. Dean; Bernd Wagner; Sven Oliver Franz; Nicole Klasen; Thomas Kleinen; Patrick Ludwig; Asfawossen Asrat; Henry F. Lamb; Melanie J. Leng; Janet Rethemeyer; Antoni E. Milodowski; Martin Claussen; Frank Schäbitz (2018). "Environmental change during MIS4 and MIS 3 opened corridors in the Horn of Africa for Homo sapiens expansion". Quaternary Science Reviews. 202: 139–153. Bibcode:2018QSRv..202..139V. doi:10.1016/j.quascirev.2018.09.008.
  471. ^ Israel Hershkovitz; Gerhard W. Weber; Rolf Quam; Mathieu Duval; Rainer Grün; Leslie Kinsley; Avner Ayalon; Miryam Bar-Matthews; Helene Valladas; Norbert Mercier; Juan Luis Arsuaga; María Martinón-Torres; José María Bermúdez de Castro; Cinzia Fornai; Laura Martín-Francés; Rachel Sarig; Hila May; Viktoria A. Krenn; Viviane Slon; Laura Rodríguez; Rebeca García; Carlos Lorenzo; Jose Miguel Carretero; Amos Frumkin; Ruth Shahack-Gross; Daniella E. Bar-Yosef Mayer; Yaming Cui; Xinzhi Wu; Natan Peled; Iris Groman-Yaroslavski; Lior Weissbrod; Reuven Yeshurun; Alexander Tsatskin; Yossi Zaidner; Mina Weinstein-Evron (2018). "The earliest modern humans outside Africa". Science. 359 (6374): 456–459. Bibcode:2018Sci...359..456H. doi:10.1126/science.aap8369. PMID 29371468. S2CID 206664380.
  472. ^ Warren D. Sharp; James B. Paces (2018). "Comment on "The earliest modern humans outside Africa"". Science. 362 (6413): eaat6598. Bibcode:2018Sci...362.6598S. doi:10.1126/science.aat6598. PMID 30361342. S2CID 53088050.
  473. ^ Israel Hershkovitz; Mathieu Duval; Rainer Grün; Norbert Mercier; Helene Valladas; Avner Ayalon; Miryam Bar-Matthews; Gerhard W. Weber; Rolf Quam; Yossi Zaidner; Mina Weinstein-Evron (2018). "Response to Comment on "The earliest modern humans outside Africa"". Science. 362 (6413): eaat8964. Bibcode:2018Sci...362.8964H. doi:10.1126/science.aat8964. PMID 30361343. S2CID 53087975.
  474. ^ Huw S. Groucutt; Rainer Grün; Iyad A. S. Zalmout; Nick A. Drake; Simon J. Armitage; Ian Candy; Richard Clark-Wilson; Julien Louys; Paul S. Breeze; Mathieu Duval; Laura T. Buck; Tracy L. Kivell; Emma Pomeroy; Nicholas B. Stephens; Jay T. Stock; Mathew Stewart; Gilbert J. Price; Leslie Kinsley; Wing Wai Sung; Abdullah Alsharekh; Abdulaziz Al-Omari; Muhammad Zahir; Abdullah M. Memesh; Ammar J. Abdulshakoor; Abdu M. Al-Masari; Ahmed A. Bahameem; Khaled M. S. Al Murayyi; Badr Zahrani; Eleanor L. M. Scerri; Michael D. Petraglia (2018). "Homo sapiens in Arabia by 85,000 years ago". Nature Ecology & Evolution. 2 (5): 800–809. doi:10.1038/s41559-018-0518-2. PMC 5935238. PMID 29632352.
  475. ^ Chad L. Yost; Lily J. Jackson; Jeffery R. Stone; Andrew S. Cohen (2018). "Subdecadal phytolith and charcoal records from Lake Malawi, East Africa imply minimal effects on human evolution from the ~74 ka Toba supereruption". Journal of Human Evolution. 116: 75–94. doi:10.1016/j.jhevol.2017.11.005. PMID 29477183.
  476. ^ Eugene I. Smith; Zenobia Jacobs; Racheal Johnsen; Minghua Ren; Erich C. Fisher; Simen Oestmo; Jayne Wilkins; Jacob A. Harris; Panagiotis Karkanas; Shelby Fitch; Amber Ciravolo; Deborah Keenan; Naomi Cleghorn; Christine S. Lane; Thalassa Matthews; Curtis W. Marean (2018). "Humans thrived in South Africa through the Toba eruption about 74,000 years ago". Nature. 555 (7697): 511–515. Bibcode:2018Natur.555..511S. doi:10.1038/nature25967. PMID 29531318. S2CID 4443481.
  477. ^ Ceri Shipton; Patrick Roberts; Will Archer; Simon J. Armitage; Caesar Bita; James Blinkhorn; Colin Courtney-Mustaphi; Alison Crowther; Richard Curtis; Francesco d' Errico; Katerina Douka; Patrick Faulkner; Huw S. Groucutt; Richard Helm; Andy I. R Herries; Severinus Jembe; Nikos Kourampas; Julia Lee-Thorp; Rob Marchant; Julio Mercader; Africa Pitarch Marti; Mary E. Prendergast; Ben Rowson; Amini Tengeza; Ruth Tibesasa; Tom S. White; Michael D. Petraglia; Nicole Boivin (2018). "78,000-year-old record of Middle and Later stone age innovation in an East African tropical forest". Nature Communications. 9 (1): Article number 1832. Bibcode:2018NatCo...9.1832S. doi:10.1038/s41467-018-04057-3. PMC 5943315. PMID 29743572.
  478. ^ Christopher S. Henshilwood; Francesco d'Errico; Karen L. van Niekerk; Laure Dayet; Alain Queffelec; Luca Pollarolo (2018). "An abstract drawing from the 73,000-year-old levels at Blombos Cave, South Africa" (PDF). Nature. 562 (7725): 115–118. Bibcode:2018Natur.562..115H. doi:10.1038/s41586-018-0514-3. PMID 30209394. S2CID 52197496.
  479. ^ Yuri Dublyansky; Gina E. Moseley; Yuri Lyakhnitsky; Hai Cheng; Lawrence R. Edwards; Denis Scholz; Gabriella Koltai; Christoph Spötl (2018). "Late Palaeolithic cave art and permafrost in the Southern Ural". Scientific Reports. 8 (1): Article number 12080. Bibcode:2018NatSR...812080D. doi:10.1038/s41598-018-30049-w. PMC 6089975. PMID 30104606.
  480. ^ Miguel Cortés-Sánchez; José Antonio Riquelme-Cantal; María Dolores Simón-Vallejo; Rubén Parrilla Giráldez; Carlos P. Odriozola; Lydia Calle Román; José S. Carrión; Guadalupe Monge Gómez; Joaquín Rodríguez Vidal; Juan José Moyano Campos; Fernando Rico Delgado; Juan Enrique Nieto Julián; Daniel Antón García; M. Aránzazu Martínez-Aguirre; Fernando Jiménez Barredo; Francisco N. Cantero-Chinchilla (2018). "Pre-Solutrean rock art in southernmost Europe: Evidence from Las Ventanas Cave (Andalusia, Spain)". PLOS ONE. 13 (10): e0204651. Bibcode:2018PLoSO..1304651C. doi:10.1371/journal.pone.0204651. PMC 6192576. PMID 30332432.
  481. ^ M. Aubert; P. Setiawan; A. A. Oktaviana; A. Brumm; P. H. Sulistyarto; E. W. Saptomo; B. Istiawan; T. A. Ma'rifat; V. N. Wahyuono; F. T. Atmoko; J.-X. Zhao; J. Huntley; P. S. C. Taçon; D. L. Howard; H. E. A. Brand (2018). "Palaeolithic cave art in Borneo". Nature. 564 (7735): 254–257. Bibcode:2018Natur.564..254A. doi:10.1038/s41586-018-0679-9. PMID 30405242. S2CID 53208538.
  482. ^ Elizabeth C. Velliky; Martin Porr; Nicholas J. Conard (2018). "Ochre and pigment use at Hohle Fels cave: Results of the first systematic review of ochre and ochre-related artefacts from the Upper Palaeolithic in Germany". PLOS ONE. 13 (12): e0209874. Bibcode:2018PLoSO..1309874V. doi:10.1371/journal.pone.0209874. PMC 6307870. PMID 30589914.
  483. ^ X. L. Zhang; B. B. Ha; S. J. Wang; Z. J. Chen; J. Y. Ge; H. Long; W. He; W. Da; X. M. Nian; M. J. Yi; X. Y. Zhou; P. Q. Zhang; Y. S. Jin; O. Bar-Yosef; J. W. Olsen; X. Gao (2018). "The earliest human occupation of the high-altitude Tibetan Plateau 40 thousand to 30 thousand years ago". Science. 362 (6418): 1049–1051. Bibcode:2018Sci...362.1049Z. doi:10.1126/science.aat8824. PMID 30498126. S2CID 54165488.
  484. ^ Rathnasiri Premathilake; Chris O. Hunt (2018). "Late Pleistocene humans in Sri Lanka used plant resources: A phytolith record from Fahien rock shelter" (PDF). Palaeogeography, Palaeoclimatology, Palaeoecology. 505: 1–17. Bibcode:2018PPP...505....1P. doi:10.1016/j.palaeo.2018.05.015. S2CID 133979583.
  485. ^ Adam Brumm; Budianto Hakim; Muhammad Ramli; Maxime Aubert; Gerrit D. van den Bergh; Bo Li; Basran Burhan; Andi Muhammad Saiful; Linda Siagian; Ratno Sardi; Andi Jusdi; Abdullah; Andi Pampang Mubarak; Mark W. Moore; Richard G. Roberts; Jian-xin Zhao; David McGahan; Brian G. Jones; Yinika Perston; Katherine Szabó; M. Irfan Mahmud; Kira Westaway; Jatmiko; E. Wahyu Saptomo; Sander van der Kaars; Rainer Grün; Rachel Wood; John Dodson; Michael J. Morwood (2018). "A reassessment of the early archaeological record at Leang Burung 2, a Late Pleistocene rock-shelter site on the Indonesian island of Sulawesi". PLOS ONE. 13 (4): e0193025. Bibcode:2018PLoSO..1393025B. doi:10.1371/journal.pone.0193025. PMC 5894965. PMID 29641524.
  486. ^ Chris Clarkson; Zenobia Jacobs; Ben Marwick; Richard Fullagar; Lynley Wallis; Mike Smith; Richard G. Roberts; Elspeth Hayes; Kelsey Lowe; Xavier Carah; S. Anna Florin; Jessica McNeil; Delyth Cox; Lee J. Arnold; Quan Hua; Jillian Huntley; Helen E. A. Brand; Tiina Manne; Andrew Fairbairn; James Shulmeister; Lindsey Lyle; Makiah Salinas; Mara Page; Kate Connell; Gayoung Park; Kasih Norman; Tessa Murphy; Colin Pardoe (2017). "Human occupation of northern Australia by 65,000 years ago". Nature. 547 (7663): 306–310. Bibcode:2017Natur.547..306C. doi:10.1038/nature22968. hdl:2440/107043. PMID 28726833. S2CID 205257212.
  487. ^ James F. O'Connell; Jim Allen; Martin A. J. Williams; Alan N. Williams; Chris S. M. Turney; Nigel A. Spooner; Johan Kamminga; Graham Brown; Alan Cooper (2018). "When did Homo sapiens first reach Southeast Asia and Sahul?". Proceedings of the National Academy of Sciences of the United States of America. 115 (34): 8482–8490. doi:10.1073/pnas.1808385115. PMC 6112744. PMID 30082377.
  488. ^ Shimona Kealy; Julien Louys; Sue O'Connor (2018). "Least-cost pathway models indicate northern human dispersal from Sunda to Sahul". Journal of Human Evolution. 125: 59–70. doi:10.1016/j.jhevol.2018.10.003. PMID 30502898.
  489. ^ Jo McDonald; Wendy Reynen; Fiona Petchey; Kane Ditchfield; Chae Byrne; Dorcas Vannieuwenhuyse; Matthias Leopold; Peter Veth (2018). "Karnatukul (Serpent's Glen): A new chronology for the oldest site in Australia's Western Desert". PLOS ONE. 13 (9): e0202511. Bibcode:2018PLoSO..1302511M. doi:10.1371/journal.pone.0202511. PMC 6145509. PMID 30231025.
  490. ^ Marieke van de Loosdrecht; Abdeljalil Bouzouggar; Louise Humphrey; Cosimo Posth; Nick Barton; Ayinuer Aximu-Petri; Birgit Nickel; Sarah Nagel; El Hassan Talbi; Mohammed Abdeljalil El Hajraoui; Saaïd Amzazi; Jean-Jacques Hublin; Svante Pääbo; Stephan Schiffels; Matthias Meyer; Wolfgang Haak; Choongwon Jeong; Johannes Krause (2018). "Pleistocene North African genomes link Near Eastern and sub-Saharan African human populations". Science. 360 (6388): 548–552. Bibcode:2018Sci...360..548V. doi:10.1126/science.aar8380. PMID 29545507. S2CID 206666517.
  491. ^ Amaia Arranz-Otaegui; Lara Gonzalez Carretero; Monica N. Ramsey; Dorian Q. Fuller; Tobias Richter (2018). "Archaeobotanical evidence reveals the origins of bread 14,400 years ago in northeastern Jordan". Proceedings of the National Academy of Sciences of the United States of America. 115 (31): 7925–7930. doi:10.1073/pnas.1801071115. PMC 6077754. PMID 30012614.
  492. ^ James Hansford; Patricia C. Wright; Armand Rasoamiaramanana; Ventura R. Pérez; Laurie R. Godfrey; David Errickson; Tim Thompson; Samuel T. Turvey (2018). "Early Holocene human presence in Madagascar evidenced by exploitation of avian megafauna". Science Advances. 4 (9): eaat6925. Bibcode:2018SciA....4.6925H. doi:10.1126/sciadv.aat6925. PMC 6135541. PMID 30214938.
  493. ^ Atholl Anderson; Geoffrey Clark; Simon Haberle; Tom Higham; Malgosia Nowak-Kemp; Amy Prendergast; Chantal Radimilahy; Lucien M. Rakotozafy; Ramilisonina; Jean-Luc Schwenninger; Malika Virah-Sawmy; Aaron Camens (2018). "New evidence of megafaunal bone damage indicates late colonization of Madagascar". PLOS ONE. 13 (10): e0204368. Bibcode:2018PLoSO..1304368A. doi:10.1371/journal.pone.0204368. PMC 6179221. PMID 30303989.
  494. ^ Darren Curnoe; Ipoi Datan; Jian-xin Zhao; Charles Leh Moi Ung; Maxime Aubert; Mohammed S. Sauffi; Goh Hsiao Mei; Raynold Mendoza; Paul S. C. Taçon (2018). "Rare Late Pleistocene-early Holocene human mandibles from the Niah Caves (Sarawak, Borneo)". PLOS ONE. 13 (6): e0196633. Bibcode:2018PLoSO..1396633C. doi:10.1371/journal.pone.0196633. PMC 5991356. PMID 29874227.
  495. ^ Leslea J. Hlusko; Joshua P. Carlson; George Chaplin; Scott A. Elias; John F. Hoffecker; Michaela Huffman; Nina G. Jablonski; Tesla A. Monson; Dennis H. O'Rourke; Marin A. Pilloud; G. Richard Scott (2018). "Environmental selection during the last ice age on the mother-to-infant transmission of vitamin D and fatty acids through breast milk". Proceedings of the National Academy of Sciences of the United States of America. 115 (19): E4426–E4432. doi:10.1073/pnas.1711788115. PMC 5948952. PMID 29686092.
  496. ^ Ben A. Potter; James F. Baichtal; Alwynne B. Beaudoin; Lars Fehren-Schmitz; C. Vance Haynes; Vance T. Holliday; Charles E. Holmes; John W. Ives; Robert L. Kelly; Bastien Llamas; Ripan S. Malhi; D. Shane Miller; David Reich; Joshua D. Reuther; Stephan Schiffels; Todd A. Surovell (2018). "Current evidence allows multiple models for the peopling of the Americas". Science Advances. 4 (8): eaat5473. Bibcode:2018SciA....4.5473P. doi:10.1126/sciadv.aat5473. PMC 6082647. PMID 30101195.
  497. ^ Alia J. Lesnek; Jason P. Briner; Charlotte Lindqvist; James F. Baichtal; Timothy H. Heaton (2018). "Deglaciation of the Pacific coastal corridor directly preceded the human colonization of the Americas". Science Advances. 4 (5): eaar5040. Bibcode:2018SciA....4.5040L. doi:10.1126/sciadv.aar5040. PMC 5976267. PMID 29854947.
  498. ^ Heather L. Smith; Ted Goebel (2018). "Origins and spread of fluted-point technology in the Canadian Ice-Free Corridor and eastern Beringia". Proceedings of the National Academy of Sciences of the United States of America. 115 (16): 4116–4121. doi:10.1073/pnas.1800312115. PMC 5910867. PMID 29610336.
  499. ^ Duncan McLaren; Daryl Fedje; Angela Dyck; Quentin Mackie; Alisha Gauvreau; Jenny Cohen (2018). "Terminal Pleistocene epoch human footprints from the Pacific coast of Canada". PLOS ONE. 13 (3): e0193522. Bibcode:2018PLoSO..1393522M. doi:10.1371/journal.pone.0193522. PMC 5873988. PMID 29590165.
  500. ^ David Bustos; Jackson Jakeway; Tommy M. Urban; Vance T. Holliday; Brendan Fenerty; David A. Raichlen; Marcin Budka; Sally C. Reynolds; Bruce D. Allen; David W. Love; Vincent L. Santucci; Daniel Odess; Patrick Willey; H. Gregory McDonald; Matthew R. Bennett (2018). "Footprints preserve terminal Pleistocene hunt? Human-sloth interactions in North America". Science Advances. 4 (4): eaar7621. Bibcode:2018SciA....4R7621B. doi:10.1126/sciadv.aar7621. PMC 5916513. PMID 29707640.
  501. ^ Thomas J. Williams; Michael B. Collins; Kathleen Rodrigues; William Jack Rink; Nancy Velchoff; Amanda Keen-Zebert; Anastasia Gilmer; Charles D. Frederick; Sergio J. Ayala; Elton R. Prewitt (2018). "Evidence of an early projectile point technology in North America at the Gault Site, Texas, USA". Science Advances. 4 (7): eaar5954. Bibcode:2018SciA....4R5954W. doi:10.1126/sciadv.aar5954. PMC 6040843. PMID 30009257.
  502. ^ Michael R. Waters; Joshua L. Keene; Steven L. Forman; Elton R. Prewitt; David L. Carlson; James E. Wiederhold (2018). "Pre-Clovis projectile points at the Debra L. Friedkin site, Texas—Implications for the Late Pleistocene peopling of the Americas". Science Advances. 4 (10): eaat4505. Bibcode:2018SciA....4.4505W. doi:10.1126/sciadv.aat4505. PMC 6200361. PMID 30397643.
  503. ^ Lorena Becerra-Valdivia; Michael R. Waters; Thomas W. Stafford Jr.; Sarah L. Anzick; Daniel Comeskey; Thibaut Devièse; Thomas Higham (2018). "Reassessing the chronology of the archaeological site of Anzick". Proceedings of the National Academy of Sciences of the United States of America. 115 (27): 7000–7003. doi:10.1073/pnas.1803624115. PMC 6142201. PMID 29915063.
  504. ^ Moreno-Mayar, J. Víctor; Potter, Ben A.; Vinner, Lasse; Steinrücken, Matthias; Rasmussen, Simon; et al. (2018). "Terminal Pleistocene Alaskan genome reveals first founding population of Native Americans" (PDF). Nature. 553 (7687): 203–207. Bibcode:2018Natur.553..203M. doi:10.1038/nature25173. PMID 29323294. S2CID 4454580.
  505. ^ Becker, Rachel (January 3, 2018). "Ancient baby's DNA reveals completely unknown branch of Native American family tree". The Verge. Retrieved January 4, 2018.
  506. ^ C. L. Scheib; Hongjie Li; Tariq Desai; Vivian Link; Christopher Kendall; Genevieve Dewar; Peter William Griffith; Alexander Mörseburg; John R. Johnson; Amiee Potter; Susan L. Kerr; Phillip Endicott; John Lindo; Marc Haber; Yali Xue; Chris Tyler-Smith; Manjinder S. Sandhu; Joseph G. Lorenz; Tori D. Randall; Zuzana Faltyskova; Luca Pagani; Petr Danecek; Tamsin C. O'Connell; Patricia Martz; Alan S. Boraas; Brian F. Byrd; Alan Leventhal; Rosemary Cambra; Ronald Williamson; Louis Lesage; Brian Holguin; Ernestine Ygnacio-De Soto; JohnTommy Rosas; Mait Metspalu; Jay T. Stock; Andrea Manica; Aylwyn Scally; Daniel Wegmann; Ripan S. Malhi; Toomas Kivisild (2018). "Ancient human parallel lineages within North America contributed to a coastal expansion". Science. 360 (6392): 1024–1027. Bibcode:2018Sci...360.1024S. doi:10.1126/science.aar6851. PMID 29853687. S2CID 44104351.
  507. ^ Cosimo Posth; Nathan Nakatsuka; Iosif Lazaridis; Pontus Skoglund; Swapan Mallick; Thiseas C. Lamnidis; Nadin Rohland; Kathrin Nägele; Nicole Adamski; Emilie Bertolini; Nasreen Broomandkhoshbacht; Alan Cooper; Brendan J. Culleton; Tiago Ferraz; Matthew Ferry; Anja Furtwängler; Wolfgang Haak; Kelly Harkins; Thomas K. Harper; Tábita Hünemeier; Ann Marie Lawson; Bastien Llamas; Megan Michel; Elizabeth Nelson; Jonas Oppenheimer; Nick Patterson; Stephan Schiffels; Jakob Sedig; Kristin Stewardson; Sahra Talamo; Chuan-Chao Wang; Jean-Jacques Hublin; Mark Hubbe; Katerina Harvati; Amalia Nuevo Delaunay; Judith Beier; Michael Francken; Peter Kaulicke; Hugo Reyes-Centeno; Kurt Rademaker; Willa R. Trask; Mark Robinson; Said M. Gutierrez; Keith M. Prufer; Domingo C. Salazar-García; Eliane N. Chim; Lisiane Müller Plumm Gomes; Marcony L. Alves; Andersen Liryo; Mariana Inglez; Rodrigo E. Oliveira; Danilo V. Bernardo; Alberto Barioni; Veronica Wesolowski; Nahuel A. Scheifler; Mario A. Rivera; Claudia R. Plens; Pablo G. Messineo; Levy Figuti; Daniel Corach; Clara Scabuzzo; Sabine Eggers; Paulo DeBlasis; Markus Reindel; César Méndez; Gustavo Politis; Elsa Tomasto-Cagigao; Douglas J. Kennett; André Strauss; Lars Fehren-Schmitz; Johannes Krause; David Reich (2018). "Reconstructing the deep population history of Central and South America". Cell. 175 (5): 1185–1197.e22. doi:10.1016/j.cell.2018.10.027. PMC 6327247. PMID 30415837.
  508. ^ J. Víctor Moreno-Mayar; Lasse Vinner; Peter de Barros Damgaard; Constanza de la Fuente; Jeffrey Chan; Jeffrey P. Spence; Morten E. Allentoft; Tharsika Vimala; Fernando Racimo; Thomaz Pinotti; Simon Rasmussen; Ashot Margaryan; Miren Iraeta Orbegozo; Dorothea Mylopotamitaki; Matthew Wooller; Clement Bataille; Lorena Becerra-Valdivia; David Chivall; Daniel Comeskey; Thibaut Devièse; Donald K. Grayson; Len George; Harold Harry; Verner Alexandersen; Charlotte Primeau; Jon Erlandson; Claudia Rodrigues-Carvalho; Silvia Reis; Murilo Q. R. Bastos; Jerome Cybulski; Carlos Vullo; Flavia Morello; Miguel Vilar; Spencer Wells; Kristian Gregersen; Kasper Lykke Hansen; Niels Lynnerup; Marta Mirazón Lahr; Kurt Kjær; André Strauss; Marta Alfonso-Durruty; Antonio Salas; Hannes Schroeder; Thomas Higham; Ripan S. Malhi; Jeffrey T. Rasic; Luiz Souza; Fabricio R. Santos; Anna-Sapfo Malaspinas; Martin Sikora; Rasmus Nielsen; Yun S. Song; David J. Meltzer; Eske Willerslev (2018). "Early human dispersals within the Americas". Science. 362 (6419): eaav2621. Bibcode:2018Sci...362.2621M. doi:10.1126/science.aav2621. PMID 30409807. S2CID 53241760.
  509. ^ César Méndez; Amalia Nuevo Delaunay; Roxana Seguel; Antonio Maldonado; Ismael Murillo; Douglas Jackson; Eugenio Aspillaga; Roberto Izaurieta; Víctor Méndez; Macarena Fernández (2018). "Late Pleistocene to early Holocene high-quality quartz crystal procurement from the Valiente quarry workshop site (32°S, Chile, South America)". PLOS ONE. 13 (11): e0208062. Bibcode:2018PLoSO..1308062M. doi:10.1371/journal.pone.0208062. PMC 6264839. PMID 30496241.
  510. ^ Jennifer Watling; Myrtle P. Shock; Guilherme Z. Mongeló; Fernando O. Almeida; Thiago Kater; Paulo E. De Oliveira; Eduardo G. Neves (2018). "Direct archaeological evidence for Southwestern Amazonia as an early plant domestication and food production centre". PLOS ONE. 13 (7): e0199868. Bibcode:2018PLoSO..1399868W. doi:10.1371/journal.pone.0199868. PMC 6059402. PMID 30044799.
  511. ^ Rebeka Rmoutilová; Pierre Guyomarc'h; Petr Velemínský; Alena Šefčáková; Mathilde Samsel; Frédéric Santos; Bruno Maureille; Jaroslav Brůžek (2018). "Virtual reconstruction of the Upper Palaeolithic skull from Zlatý Kůň, Czech Republic: Sex assessment and morphological affinity". PLOS ONE. 13 (8): e0201431. Bibcode:2018PLoSO..1301431R. doi:10.1371/journal.pone.0201431. PMC 6116938. PMID 30161127.
  512. ^ Simon Blockley; Ian Candy; Ian Matthews; Pete Langdon; Cath Langdon; Adrian Palmer; Paul Lincoln; Ashley Abrook; Barry Taylor; Chantal Conneller; Alex Bayliss; Alison MacLeod; Laura Deeprose; Chris Darvill; Rebecca Kearney; Nancy Beavan; Richard Staff; Michael Bamforth; Maisie Taylor; Nicky Milner (2018). "The resilience of postglacial hunter-gatherers to abrupt climate change" (PDF). Nature Ecology & Evolution. 2 (5): 810–818. doi:10.1038/s41559-018-0508-4. PMID 29581589. S2CID 4354220.
  513. ^ Ursula Wierer; Simona Arrighi; Stefano Bertola; Günther Kaufmann; Benno Baumgarten; Annaluisa Pedrotti; Patrizia Pernter; Jacques Pelegrin (2018). "The Iceman's lithic toolkit: Raw material, technology, typology and use". PLOS ONE. 13 (6): e0198292. Bibcode:2018PLoSO..1398292W. doi:10.1371/journal.pone.0198292. PMC 6010222. PMID 29924811.
  514. ^ Frank Maixner; Dmitrij Turaev; Amaury Cazenave-Gassiot; Marek Janko; Ben Krause-Kyora; Michael R. Hoopmann; Ulrike Kusebauch; Mark Sartain; Gea Guerriero; Niall O'Sullivan; Matthew Teasdale; Giovanna Cipollini; Alice Paladin; Valeria Mattiangeli; Marco Samadelli; Umberto Tecchiati; Andreas Putzer; Mine Palazoglu; John Meissen; Sandra Lösch; Philipp Rausch; John F. Baines; Bum Jin Kim; Hyun-Joo An; Paul Gostner; Eduard Egarter-Vigl; Peter Malfertheiner; Andreas Keller; Robert W. Stark; Markus Wenk; David Bishop; Daniel G. Bradley; Oliver Fiehn; Lars Engstrand; Robert L. Moritz; Philip Doble; Andre Franke; Almut Nebel; Klaus Oeggl; Thomas Rattei; Rudolf Grimm; Albert Zink (2018). "The Iceman's last meal consisted of fat, wild meat, and cereals". Current Biology. 28 (14): 2348–2355.e9. doi:10.1016/j.cub.2018.05.067. PMC 6065529. PMID 30017480.
  515. ^ Thomas Sutikna; Matthew W. Tocheri; J. Tyler Faith; Jatmiko; Rokus Due Awe; Hanneke J. M.Meijer; E. Wahyu Saptomo; Richard G. Roberts (2018). "The spatio-temporal distribution of archaeological and faunal finds at Liang Bua (Flores, Indonesia) in light of the revised chronology for Homo floresiensis". Journal of Human Evolution. 124: 52–74. doi:10.1016/j.jhevol.2018.07.001. PMID 30173885.
  516. ^ Serena Tucci; Samuel H. Vohr; Rajiv C. McCoy; Benjamin Vernot; Matthew R. Robinson; Chiara Barbieri; Brad J. Nelson; Wenqing Fu; Gludhug A. Purnomo; Herawati Sudoyo; Evan E. Eichler; Guido Barbujani; Peter M. Visscher; Joshua M. Akey; Richard E. Green (2018). "Evolutionary history and adaptation of a human pygmy population of Flores Island, Indonesia". Science. 361 (6401): 511–516. Bibcode:2018Sci...361..511T. doi:10.1126/science.aar8486. PMC 6709593. PMID 30072539.
  517. ^ Erik Trinkaus (2018). "An abundance of developmental anomalies and abnormalities in Pleistocene people". Proceedings of the National Academy of Sciences of the United States of America. 115 (47): 11941–11946. doi:10.1073/pnas.1814989115. PMC 6255161. PMID 30397116.
  518. ^ Kenneth D. Rose; Rachel H. Dunn; Kishor Kumar; Jonathan M.G. Perry; Kristen A. Prufrock; Rajendra S. Rana; Thierry Smith (2018). "New fossils from Tadkeshwar Mine (Gujarat, India) increase primate diversity from the early Eocene Cambay Shale". Journal of Human Evolution. 122: 93–107. doi:10.1016/j.jhevol.2018.05.006. PMID 29886006. S2CID 47012170.
  519. ^ a b c Amy L. Atwater; E. Christopher Kirk (2018). "New middle Eocene omomyines (Primates, Haplorhini) from San Diego County, California". Journal of Human Evolution. 124: 7–24. doi:10.1016/j.jhevol.2018.04.010. PMID 30149995. S2CID 52096220.
  520. ^ Samuel T. Turvey; Kristoffer Bruun; Alejandra Ortiz; James Hansford; Songmei Hu; Yan Ding; Tianen Zhang; Helen J. Chatterjee (2018). "New genus of extinct Holocene gibbon associated with humans in Imperial China". Science. 360 (6395): 1346–1349. Bibcode:2018Sci...360.1346T. doi:10.1126/science.aao4903. PMID 29930136. S2CID 49362994.
  521. ^ Marc Godinot; Brigitte Senut; Martin Pickford (2018). "Primitive Adapidae from Namibia sheds light on the early primate radiation in Africa" (PDF). Communications of the Geological Survey of Namibia. 20: 140–162.
  522. ^ James B. Rossie; Andrew Hill (2018). "A new species of Simiolus from the middle Miocene of the Tugen Hills, Kenya". Journal of Human Evolution. 125: 50–58. doi:10.1016/j.jhevol.2018.09.002. PMID 30502897. S2CID 54625375.
  523. ^ St. Fleur, Nicholas (5 November 2018). "Tiniest Ape Ever Discovered Hints at the Rise of the Monkeys - The newly identified extinct primate weighed slightly less than an average house cat". The New York Times. Retrieved 7 November 2018.
  524. ^ Sergi López-Torres; Mary T. Silcox; Patricia A. Holroyd (2018). "New omomyoids (Euprimates, Mammalia) from the late Uintan of southern California, USA, and the question of the extinction of the Paromomyidae (Plesiadapiformes, Primates)" (PDF). Palaeontologia Electronica. 21 (3): Article number 21.3.37A. doi:10.26879/756.
  525. ^ a b Shundong Bi; Xiaoting Zheng; Xiaoli Wang; Natalie E. Cignetti; Shiling Yang; John R. Wible (2018). "An Early Cretaceous eutherian and the placental–marsupial dichotomy". Nature. 558 (7710): 390–395. Bibcode:2018Natur.558..390B. doi:10.1038/s41586-018-0210-3. PMID 29899454. S2CID 49183466.
  526. ^ Yuan-Qing Wang; Nao Kusuhashi; Xun Jin; Chuan-Kui Li; Takeshi Setoguchi; Chun-Ling Gao; Jin-Yuan Liu (2018). "Reappraisal of Endotherium niinomii Shikama, 1947, a eutherian mammal from the Lower Cretaceous Fuxin Formation, Fuxin-Jinzhou Basin, Liaoning, China". Vertebrata PalAsiatica. 56 (3): 180–192. doi:10.19615/j.cnki.1000-3118.180226.
  527. ^ James G. Napoli; Thomas E. Williamson; Sarah L. Shelley; Stephen L. Brusatte (2018). "A Digital Endocranial Cast of the Early Paleocene (Puercan) 'Archaic' Mammal Onychodectes tisonensis (Eutheria: Taeniodonta)". Journal of Mammalian Evolution. 25 (2): 179–195. doi:10.1007/s10914-017-9381-1. PMC 5938319. PMID 29755252.
  528. ^ Mark S. Springer; William J. Murphy; Alfred L. Roca (2018). "Appropriate fossil calibrations and tree constraints uphold the Mesozoic divergence of solenodons from other extant mammals". Molecular Phylogenetics and Evolution. 121: 158–165. doi:10.1016/j.ympev.2018.01.007. PMID 29331683.
  529. ^ A. V. Lopatin (2018). "A new record of Mongoloscapter (Talpidae, Lipotyphla, Mammalia) from the Oligocene of Mongolia". Paleontological Journal. 52 (6): 677–681. doi:10.1134/S0031030118060072. S2CID 92802900.
  530. ^ Barbara Rzebik-Kowalska; Andrea Pereswiet-Soltan (2018). "Contribution to the validity and taxonomic status of the European fossil shrew Sorex subaraneus and the origin of Sorex araneus (Soricidae, Eulipotyphla, Insectivora, Mammalia)". Palaeontologia Electronica. 21 (2): Article number 21.2.33A. doi:10.26879/788.
  531. ^ Antonio Borrani; Andrea Savorelli; Federico Masini; Paul P. A. Mazza (2018). "The tangled cases of Deinogalerix (Late Miocene endemic erinaceid of Gargano) and Galericini (Eulipotyphla, Erinaceidae): a cladistic perspective". Cladistics. 34 (5): 542–561. doi:10.1111/cla.12215. PMID 34649375. S2CID 90105058.
  532. ^ Lars W. van den Hoek Ostende (2018). "Cladistics and insular evolution, an unfortunate marriage? Another tangle in the Deinogalerix analysis of Borrani et al. (2017)". Cladistics. 34 (6): 708–713. doi:10.1111/cla.12238. PMID 34641636. S2CID 221550820.
  533. ^ Andrea Corona; Daniel Perea; Martín Ubilla (2018). "The humerus of Proterotheriidae (Mammalia, Litopterna) and its systematic usefulness: the case of "Proterotherium berroi" Kraglievich, 1930". Ameghiniana. 55 (2): 150–161. doi:10.5710/AMGH.10.12.2017.3148. S2CID 133665673.
  534. ^ Helder Gomes Rodrigues; Raphaël Cornette; Julien Clavel; Guillermo Cassini; Bhart-Anjan S. Bhullar; Marcos Fernández-Monescillo; Karen Moreno; Anthony Herrel; Guillaume Billet (2018). "Differential influences of allometry, phylogeny and environment on the rostral shape diversity of extinct South American notoungulates". Royal Society Open Science. 5 (1): 171816. Bibcode:2018RSOS....571816G. doi:10.1098/rsos.171816. PMC 5792951. PMID 29410874.
  535. ^ Alejo C. Scarano; Bárbara Vera (2018). "Geometric morphometric analysis as a proxy to evaluate age-related change in molar shape variation of low-crowned Notoungulata (Mammalia)". Journal of Morphology. 279 (2): 216–227. doi:10.1002/jmor.20766. PMID 29068070. S2CID 3455270.
  536. ^ M. D. Ercoli; A. M. Candela; L. L. Rasia; M. A. Ramírez (2018). "Dental shape variation of Neogene Pachyrukhinae (Mammalia, Notoungulata, Hegetotheriidae): systematics and evolutionary implications for the late Miocene Paedotherium species". Journal of Systematic Palaeontology. 16 (13): 1073–1095. doi:10.1080/14772019.2017.1366956. S2CID 90152884.
  537. ^ Renata Sostillo; Esperanza Cerdeño; Claudia I. Montalvo (2018). "Taxonomic implications of a large sample of Tremacyllus (Hegetotheriidae: Pachyrukhinae) from the late Miocene Cerro Azul Formation of La Pampa, Argentina". Ameghiniana. 55 (4): 407–422. doi:10.5710/AMGH.18.12.2017.3146.
  538. ^ Bárbara Vera; Marcos D. Ercoli (2018). "Systematic and morphogeometric analyses of Pachyrukhinae (Mammalia, Hegetotheriidae) from the Huayquerías, Mendoza (Argentina): biostratigraphic and evolutionary implications". Journal of Vertebrate Paleontology. 38 (3): e1473410. doi:10.1080/02724634.2018.1473410. S2CID 90879473.
  539. ^ Marcos Fernández-Monescillo; Bernardino Mamani Quispe; François Pujos; Pierre-Olivier Antoine (2018). "Functional anatomy of the forelimb of Plesiotypotherium achirense (Mammalia, Notoungulata, Mesotheriidae) and evolutionary insights at the family level". Journal of Mammalian Evolution. 25 (2): 197–211. doi:10.1007/s10914-016-9372-7. S2CID 26109653.
  540. ^ Wighart von Koenigswald; Kenneth D. Rose; Luke T. Holbrook; Kishor Kumar; Rajendra S. Rana; Thierry Smith (2018). "Mastication and enamel microstructure in Cambaytherium, a perissodactyl-like ungulate from the early Eocene of India". PalZ. 92 (4): 671–680. doi:10.1007/s12542-018-0422-8. S2CID 133969194.
  541. ^ Sarah L. Shelley; Thomas E. Williamson; Stephen L. Brusatte (2018). "The osteology of Periptychus carinidens: A robust, ungulate-like placental mammal (Mammalia: Periptychidae) from the Paleocene of North America". PLOS ONE. 13 (7): e0200132. Bibcode:2018PLoSO..1300132S. doi:10.1371/journal.pone.0200132. PMC 6051615. PMID 30020948.
  542. ^ Jorge Morales; Martin Pickford (2018). "A reassessment of Prionogale and Namasector (Prionogalidae, Hyaenodonta, Mammalia) with descriptions of new fossils from Napak, Uganda and Koru, Kenya" (PDF). Communications of the Geological Survey of Namibia. 20: 114–139.
  543. ^ Floréal Solé; Dubied Morgane; Kévin Le Verger; Mennecart Bastien (2018). "Niche partitioning of the European carnivorous mammals during the Paleogene". PALAIOS. 33 (11): 514–523. Bibcode:2018Palai..33..514S. doi:10.2110/palo.2018.022. S2CID 134345822.
  544. ^ John A. Moretti (2018). "Early Pleistocene leporids (Mammalia, Lagomorpha) of Roland Springs Ranch Locality 1 and the rise of North American Quaternary leporines". Quaternary International. 492: 23–39. Bibcode:2018QuInt.492...23M. doi:10.1016/j.quaint.2017.08.048. S2CID 90742480.
  545. ^ a b Sergi López-Torres; Mary T. Silcox (2018). "The European Paromomyidae (Primates, Mammalia): taxonomy, phylogeny, and biogeographic implications". Journal of Paleontology. 92 (5): 920–937. doi:10.1017/jpa.2018.10. S2CID 134981979.
  546. ^ a b c Eric De Bast; Cyril Gagnaison; Thierry Smith (2018). "Plesiadapid mammals from the latest Paleocene of France offer new insights on the evolution of Plesiadapis during the Paleocene-Eocene transition". Journal of Vertebrate Paleontology. 38 (3): e1460602. doi:10.1080/02724634.2018.1460602. S2CID 89847768.
  547. ^ Jerry J. Hooker (2018). "Eocene antiquity of the European nyctitheriid euarchontan mammal Darbonetus". Acta Palaeontologica Polonica. 63 (2): 235–239. doi:10.4202/app.00457.2018.
  548. ^ a b Floréal Solé; Marc Godinot; Yves Laurent; Alain Galoyer; Thierry Smith (2018). "The European Mesonychid Mammals: Phylogeny, Ecology, Biogeography, and Biochronology". Journal of Mammalian Evolution. 25 (3): 339–379. doi:10.1007/s10914-016-9371-8. S2CID 207195968.
  549. ^ a b c d André R. Wyss; John J. Flynn; Darin A. Croft (2018). "New Paleogene notohippids and leontiniids (Toxodontia; Notoungulata; Mammalia) from the Early Oligocene Tinguiririca Fauna of the Andean Main Range, central Chile". American Museum Novitates (3903): 1–42. doi:10.1206/3903.1. hdl:2246/6901. S2CID 53066966.
  550. ^ a b Juan D. Carrillo; Eli Amson; Carlos Jaramillo; Rodolfo Sánchez; Luis Quiroz; Carlos Cuartas; Aldo F. Rincón; Marcelo R. Sánchez-Villagra (2018). "The Neogene record of northern South American native ungulates". Smithsonian Contributions to Paleobiology. 101 (101): iv-67. doi:10.5479/si.1943-6688.101.
  551. ^ Craig S. Scott (2018). "Horolodectidae: a new family of unusual eutherians (Mammalia: Theria) from the Palaeocene of Alberta, Canada". Zoological Journal of the Linnean Society. 185 (2): 431–458. doi:10.1093/zoolinnean/zly040.
  552. ^ A. V. Lopatin; A. O. Averianov (2018). "A new stem placental mammal from the Early Cretaceous of Mongolia". Doklady Biological Sciences. 478 (1): 8–11. doi:10.1134/S0012496618010027. PMID 29536398. S2CID 3864134.
  553. ^ a b Andrew J. McGrath; Federico Anaya; Darin A. Croft (2018). "Two new macraucheniids (Mammalia: Litopterna) from the late middle Miocene (Laventan South American Land Mammal Age) of Quebrada Honda, Bolivia". Journal of Vertebrate Paleontology. 38 (3): e1461632. doi:10.1080/02724634.2018.1461632. S2CID 89881990.
  554. ^ Martin Jehle; Marc Godinot; Dominique Delsate; Alain Phélizon; Jean-Louis Pellouin (2018). "Evolution of plesiadapid mammals (Eutheria, Euarchonta, Plesiadapiformes) in Europe across the Paleocene/Eocene boundary: implications for phylogeny, biochronology and scenarios of dispersal". Palaeobiodiversity and Palaeoenvironments. 99 (2): 293–351. doi:10.1007/s12549-018-0331-6. S2CID 135259959.
  555. ^ Louis de Bonis; Floreal Solé; Yaowalak Chaimanee; Aung Naing Soe; Chit Sein; Vincent Lazzari; Olivier Chavasseau; Jean-Jacques Jaeger (2018). "New Hyaenodonta (Mammalia) from the middle Eocene of Myanmar". Comptes Rendus Palevol. 17 (6): 357–365. doi:10.1016/j.crpv.2017.12.003.
  556. ^ Esperanza Cerdeño; Bárbara Vera; Ana María Combina (2018). "A new early Miocene Mesotheriidae (Notoungulata) from the Mariño Formation (Argentina): Taxonomic and biostratigraphic implications". Journal of South American Earth Sciences. 88: 118–131. Bibcode:2018JSAES..88..118C. doi:10.1016/j.jsames.2018.06.016. S2CID 135197187.
  557. ^ Chiara Angelone; Stanislav Čermák; Blanca Moncunill-Solé; Josep Quintana; Caterinella Tuveri; Marisa Arca; Tassos Kotsakis (2018). "Systematics and paleobiogeography of Sardolagus obscurus n. gen. n. sp. (Leporidae, Lagomorpha) from the early Pleistocene of Sardinia". Journal of Paleontology. 92 (3): 506–522. doi:10.1017/jpa.2017.144. S2CID 134492340.
  558. ^ Vladimir S. Zazhigin; Leonid L. Voyta (2018). "A new middle Miocene crocidosoricine shrew from the Mongolian Shargain Gobi Desert". Acta Palaeontologica Polonica. 63 (1): 171–187. doi:10.4202/app.00396.2017.
  559. ^ Jerry J. Hooker (2018). "A mammal fauna from the Paleocene-Eocene Thermal Maximum of Croydon, London, UK". Proceedings of the Geologists' Association. 131 (5): 458–473. doi:10.1016/j.pgeola.2018.01.001. S2CID 134941309.
  560. ^ Matías A. Armella; Daniel A. García-López; Lucía Dominguez (2018). "A new species of Xotodon (Notoungulata, Toxodontidae) from northwestern Argentina". Journal of Vertebrate Paleontology. 38 (1): e1425882. doi:10.1080/02724634.2017.1425882. S2CID 90303847.
  561. ^ Sergi López-Torres; Łucja Fostowicz-Frelik (2018). "A new Eocene anagalid (Mammalia: Euarchontoglires) from Mongolia and its implications for the group's phylogeny and dispersal". Scientific Reports. 8 (1): Article number 13955. Bibcode:2018NatSR...813955L. doi:10.1038/s41598-018-32086-x. PMC 6141491. PMID 30224674.
  562. ^ Ray Stanford; Martin G. Lockley; Compton Tucker; Stephen Godfrey; Sheila M. Stanford (2018). "A diverse mammal-dominated, footprint assemblage from wetland deposits in the Lower Cretaceous of Maryland". Scientific Reports. 8 (1): Article number 741. Bibcode:2018NatSR...8..741S. doi:10.1038/s41598-017-18619-w. PMC 5792599. PMID 29386519.
  563. ^ Jin Meng; Shundong Bi; Xiaoting Zheng; Xiaoli Wang (2018). "Ear ossicle morphology of the Jurassic euharamiyidan Arboroharamiya and evolution of mammalian middle ear". Journal of Morphology. 279 (4): 441–457. doi:10.1002/jmor.20565. PMID 27228358. S2CID 38023914.
  564. ^ Julia A. Schultz; Irina Ruf; Thomas Martin (2018). "Oldest known multituberculate stapes suggests an asymmetric bicrural pattern as ancestral for Multituberculata". Proceedings of the Royal Society B: Biological Sciences. 285 (1873): 20172779. doi:10.1098/rspb.2017.2779. PMC 5832711. PMID 29467266.
  565. ^ Elsa Panciroli; Roger B.J. Benson; Richard J. Butler (2018). "New partial dentaries of amphitheriid mammalian Palaeoxonodon ooliticus from Scotland, and posterior dentary morphology in early cladotherians". Acta Palaeontologica Polonica. 63 (2): 197–206. doi:10.4202/app.00434.2017.
  566. ^ Alexander N. Kuznetsov; Aleksandra A. Panyutina (2018). "First paleoichnological evidence for baby–riding in early mammals". Ameghiniana. 55 (6): 668–676. doi:10.5710/AMGH.03.02.2018.3184. S2CID 133852517.
  567. ^ Mariela C. Castro; Francisco J. Goin; Edgardo Ortiz-Jaureguizar; E. Carolina Vieytes; Kaori Tsukui; Jahandar Ramezani; Alessandro Batezelli; Júlio C. A. Marsola; Max C. Langer (2018). "A Late Cretaceous mammal from Brazil and the first radioisotopic age for the Bauru Group". Royal Society Open Science. 5 (5): 180482. Bibcode:2018RSOS....580482C. doi:10.1098/rsos.180482. PMC 5990825. PMID 29892465.
  568. ^ Craig S. Scott; Anne Weil; Jessica M. Theodor (2018). "A new, diminutive species of Catopsalis (Mammalia, Multituberculata, Taeniolabidoidea) from the early Paleocene of southwestern Alberta, Canada". Journal of Paleontology. 92 (5): 896–910. doi:10.1017/jpa.2018.2. S2CID 134594197.
  569. ^ Adam K. Huttenlocker; David M. Grossnickle; James I. Kirkland; Julia A. Schultz; Zhe-Xi Luo (2018). "Late-surviving stem mammal links the lowermost Cretaceous of North America and Gondwana". Nature. 558 (7708): 108–112. Bibcode:2018Natur.558..108H. doi:10.1038/s41586-018-0126-y. PMID 29795343. S2CID 43921185.
  570. ^ Donald Lofgren; Randall L. Nydam; Maddie Gaumer; Elisa Kong; Malcolm McKenna (2018). "New records of multituberculate mammals from the Goler Formation (Tiffanian, Paleocene) of California". Paludicola. 11 (4): 149–163.
  571. ^ a b Alexander Averianov; Thomas Martin; Alexey Lopatin; Pavel Skutschas; Rico Schellhorn; Petr Kolosov; Dmitry Vitenko (2018). "A high-latitude fauna of mid-Mesozoic mammals from Yakutia, Russia". PLOS ONE. 13 (7): e0199983. Bibcode:2018PLoSO..1399983A. doi:10.1371/journal.pone.0199983. PMC 6059412. PMID 30044817.
  572. ^ Zoltán Csiki-Sava; Mátyás Vremir; Jin Meng; Stephen L. Brusatte; Mark A. Norell (2018). "Dome-headed, small-brained island mammal from the Late Cretaceous of Romania". Proceedings of the National Academy of Sciences of the United States of America. 115 (19): 4857–4862. Bibcode:2018PNAS..115.4857C. doi:10.1073/pnas.1801143115. PMC 5948999. PMID 29686084.
  573. ^ Thierry Smith; Vlad A. Codrea; Ghéreint Devillet; Alexandru A. Solomon (2021). "A New Mammal Skull from the Late Cretaceous of Romania and Phylogenetic Affinities of Kogaionid Multituberculates". Journal of Mammalian Evolution. 29: 1–26. doi:10.1007/s10914-021-09564-7. S2CID 244194193.