추적아민 관련 수용체

Trace amine-associated receptor

미량아민 관련 수용체(TARs 또는 TARs)는 미량아민 수용체(Trace Amine)라고도 하며, 2001년에 발견된 G단백질 결합 수용체의 일종이다.[1][2] TAAR1은 6개의 기능성 인간 TAAR 중 첫 번째로 아미노산 페닐타일아민, 티라민, 트립토판 - 각각 페닐알라닌, 티로신, 에페드린의 대사 유도체 - 미량아민 페닐타일아민, 트립토판내생 수용체 역할을 하여 학술 및 독점적인 제약 연구에 상당한 관심을 얻었다. 합성심리 자극제, 암페타민, 필로폰, 메틸렌디옥시메탐페타민(MDMA, 엑스터시)은 물론.[3][4][5][6][7][8] 2004년에는 포유류 TAAR1이 갑상선 호르몬티로나민, 디카복실화, 탈기화 친척의 수용체라는 사실도 밝혀졌다.[5] TAAR2–TAAR9는 척추동물휘발성 아민 냄새제에 대한 후각 수용체 역할을 한다.[9]

동물성 TAAR 보충제

다음은 선택된 동물 게놈에 포함된 TAAR 목록이다.[10][11]

인간 추적 아민 관련 수용체

인간 추적 아민 관련 수용체(hTAAR) 6개(hTAAR1, hTAAR2, hTAAR5, hTAAR6, hTAAR8, hTAAR9)가 확인되었으며 부분적으로 특성화되었다. 아래 표에는 이들 수용체의 표현 프로파일, 신호 전달 메커니즘, 리간드, 생리학적 기능에 대한 문헌 검토, 약리학 데이터베이스 및 보충 1차 연구 논문이 수록되어 있다.

인간 미량 아민 관련 수용체의 약리학 및 분자생물학
타아
아형의
이전
이름들
신호
전도의
표현
프로필
인간에게[note 1] 알려져 있거나 주입된 기능 알려진 리간즈 원천
hTAAR1 TA1
타르1
Gs, Gq,
GIRKs,
β-arrestin 2
CNS: (전파)척수
주변부: 췌장 β-세포, , 십이지장, , 백혈구[note 2]
CNS: 모노아민/글루타메뉴전송의 변조
• CNS: 인지 과정 및 기분 상태 조절
• 주변부: 백혈구세포혈전축
• 주변기기: GI 호르몬 방출 및 혈당 조절
• 포만도와 체중의 조절
추적 아민(예: tyramine, PEA, NMPEA)
모노아민 신경전달물질(예: 도파민)
암페타민일부 구조 아날로그
[3][13]
[15][16]
hTAAR2
[주3]
GPR58 Golf, 기타 G 단백질 커플링을 알 수 없음[note 4] CNS: 뇌(제한됨)[note 5]
주변부: 후각상피, 장, 심장, 고환, 백혈구
• 주변부: 백혈구세포혈전축
후각: 휘발성 악취제용[note 6] 화학수용체
[9][13]
[15][16]
[17][18]
TAAR3 GPR57 N/A N/A 인간유사성 N/A [12][13]
[15]
TAAR4 TA2 해당 없음 해당 없음 인간유사성 – 해당 없음 해당 없음 [12][13]
[15]
hTAAR5 PNR Gs, Golf,
Gq, G12/13
CNS: 뇌(제한됨),
척수
주변부: 후각상피, 장, 고환, 백혈구
• 후각: 휘발성 및 악취제를[note 6] 위한 화학수용체 • 작용제: 트리메틸아민, N, N-DMEA
• 역작용제: 3-오도티로나민
[9][13]
[15][20]
[21][22]
[23]
hTAAR6 TA4
타르4
Golf, 기타 G 단백질 커플링을 알 수 없음 CNS: 뇌
주변부: 후각상피, 장, 고환, 백혈구, 신장
• 후각: 휘발성 악취제용[note 6] 화학수용체 • 작용제: putrescinecadaverine[24] [9][13]
[15][25]
타아르7 해당 없음 해당 없음 인간유사성 – 해당 없음 해당 없음 [9][13]
[15]
hTAAR8 TA5
GPR102
Golf, Gi/o CNS: 뇌
주변부: 후각상피, 멜라노사이트,[26] 위, 장, 심장, 고환, 백혈구, 신장, 폐, 근육, 비장
• 후각: 휘발성 악취제용[note 6] 화학수용체 • 작용제: putrescinecadaverine[24] [9][13]
[15][27]
hTAAR9
[주 7]
TA3
타르3
Golf, 기타 G 단백질 커플링을 알 수 없음 CNS: 척수
주변부: 후각상피, 장, 백혈구, 뇌하수체, 골격근, 비장
• 후각: 휘발성 악취제용[note 6] 화학수용체 • 작용제: N-메틸피페리딘(CAS: 626-67-5) [9][13]
[15][29]
메모들
  1. ^ 2017년 12월 현재 CNS와 후각상피외 말초조직에서 hTAAR2, hTAAR5, hTAAR6, hTAAR8, hTAAR9의 기능이 결정되지 않았다.[13]
  2. ^ hTAAR1은 인간의 후각 상피 내에 표현되지 않는 유일한 TAAR 하위 유형이다.[9][14] 따라서 다른 모든 인간 추적 아민 관련 수용체와 달리 hTAAR1은 인간에서 후각 수용체 역할을 하지 않는다.[9][14]
  3. ^ hTAAR2는 인간 TAAR2 유전자에서 조기 정지 코돈이 수반되는 단핵화 다형성 발생으로 아시아인의 10~15%에 해당하는 비기능 수용체다.[12][13]
  4. ^ hTAAR2는 G단백질과의α 공존이 확인되었으나 정확한 신호전달 메커니즘은 아직 확립되지 않았다.[13][17]
  5. ^ hTAAR2 표현은 인간의 소뇌에서 관찰되었다.[18]
  6. ^ a b c d e 인간과 다른 동물에서 후각상피세포에 발현된 TAAR은 특정 페로몬을 포함한 휘발성아민취제를 검출하는 후각수용체로서 기능한다;[9][15] 이러한 TAARs는 사회적 단서의 후각 검출에 관여하는 페로몬 수용체들의 한 종류로서 perromone 수용체들의 역할을 한다.[9][15]

    인간이 아닌 동물을 대상으로 한 연구에 대한 리뷰는 후각 상피의 TAAR이 작용하는 사람에게 매력적이거나 혐오적인 행동 반응을 중재할 수 있다는 것을 보여주었다.[9] 이 검토는 또한 TAAR에 의해 야기된 행동 대응은 종마다 다를 수 있다는 점에 주목했다.[9] 예를 들어, TAAR5는 마우스의 트리메틸아민에 대한 유인력과 랫드의 트리메틸아민에 대한 혐오를 매개한다.[9] 인간에게 있어서 hTAAR5는 아마도 hTAAR5 작용제로 작용하고 인간에게 혐오감을 주는 반칙하고 비린내가 나는 것으로 알려진 트리메틸아민에 대한 혐오를 매개하는 것으로 추정되지만,[9][19] hTAAR5만이 인간에게 트리메틸아민 후각을 담당하는 후각 수용체는 아니다.[9][19] 2015년 12월 현재 hTAAR5 매개 트리메틸아민 혐오는 발표된 연구에서 조사되지 않았다.[19]
  7. ^ hTAAR9는 대부분의 개인에서 기능 수용체지만, 인간 TAAR9 유전자에서 기능상실 돌연변이, 특히 다형성 조기정지 코돈은 개인 10~30%에서 발생한다.[12][13]

질병 연결 및 임상적 중요성

참고 항목

참조

  1. ^ Borowsky B, Adham N, Jones KA, Raddatz R, Artymyshyn R, Ogozalek KL, Durkin MM, Lakhlani PP, Bonini JA, Pathirana S, Boyle N, Pu X, Kouranova E, Lichtblau H, Ochoa FY, Branchek TA, Gerald C (2001). "Trace amines: identification of a family of mammalian G protein-coupled receptors". PNAS. 98 (16): 8966–71. doi:10.1073/pnas.151105198. PMC 55357. PMID 11459929.
  2. ^ Bunzow JR, Sonders MS, Arttamangkul S, Harrison LM, Zhang G, Quigley DI, Darland T, Suchland KL, Pasumamula S, Kennedy JL, Olson SB, Magenis RE, Amara SG, Grandy DK (2001). "Amphetamine, 3,4-methylenedioxymethamphetamine, lysergic acid diethylamide, and metabolites of the catecholamine neurotransmitters are agonists of a rat trace amine receptor". Mol. Pharmacol. 60 (6): 1181–8. doi:10.1124/mol.60.6.1181. PMID 11723224.
  3. ^ a b Miller GM (January 2011). "The emerging role of trace amine-associated receptor 1 in the functional regulation of monoamine transporters and dopaminergic activity". J. Neurochem. 116 (2): 164–176. doi:10.1111/j.1471-4159.2010.07109.x. PMC 3005101. PMID 21073468.
  4. ^ Lam VM, Espinoza S, Gerasimov AS, Gainetdinov RR, Salahpour A (June 2015). "In-vivo pharmacology of Trace-Amine Associated Receptor 1". Eur. J. Pharmacol. 763 (Pt B): 136–42. doi:10.1016/j.ejphar.2015.06.026. PMID 26093041.
  5. ^ a b Scanlan TS, Suchland KL, Hart ME, Chiellini G, Huang Y, Kruzich PJ, Frascarelli S, Crossley DA, Bunzow JR, Ronca-Testoni S, Lin ET, Hatton D, Zucchi R, Grandy DK (2004). "3-Iodothyronamine is an endogenous and rapid-acting derivative of thyroid hormone". Nat. Med. 10 (6): 638–42. doi:10.1038/nm1051. PMID 15146179. S2CID 2389946.
  6. ^ Lindemann L, Hoener MC (2005). "A renaissance in trace amines inspired by a novel GPCR family". Trends Pharmacol. Sci. 26 (5): 274–81. doi:10.1016/j.tips.2005.03.007. PMID 15860375.
  7. ^ Hart ME, Suchland KL, Miyakawa M, Bunzow JR, Grandy DK, Scanlan TS (2006). "Trace amine-associated receptor agonists: synthesis and evaluation of thyronamines and related analogues". J. Med. Chem. 49 (3): 1101–12. doi:10.1021/jm0505718. PMID 16451074.
  8. ^ Grandy DK (2007). "Trace amine-associated receptor 1-Family archetype or iconoclast?". Pharmacol. Ther. 116 (3): 355–390. doi:10.1016/j.pharmthera.2007.06.007. PMC 2767338. PMID 17888514.
  9. ^ a b c d e f g h i j k l m n o p Liberles SD (October 2015). "Trace amine-associated receptors: ligands, neural circuits, and behaviors". Curr. Opin. Neurobiol. 34: 1–7. doi:10.1016/j.conb.2015.01.001. PMC 4508243. PMID 25616211. Roles for another receptor are supported by TAAR5-independent trimethylamine anosmias in humans [32]. ... Several TAARs detect volatile and aversive amines, but the olfactory system is capable of discarding ligand-based or function-based constraints on TAAR evolution. Particular TAARs have mutated to recognize new ligands, with almost an entire teleost clade losing the canonical amine-recognition motif. Furthermore, while some TAARs detect aversive odors, TAAR-mediated behaviors can vary across species. ... The ability of particular TAARs to mediate aversion and attraction behavior provides an exciting opportunity for mechanistic unraveling of odor valence encoding.
    그림 2: 각 TAAR에 대한 리간드, 표현 패턴 및 종별 행동 대응 표
  10. ^ Hussain A, Saraiva LR, Korsching SI (2009). "Positive Darwinian selection and the birth of an olfactory receptor clade in teleosts". PNAS. 106 (11): 4313–8. doi:10.1073/pnas.0803229106. PMC 2657432. PMID 19237578.
  11. ^ Maguire JJ, Parker WA, Foord SM, Bonner TI, Neubig RR, Davenport AP (March 2009). "International Union of Pharmacology. LXXII. Recommendations for trace amine receptor nomenclature". Pharmacol. Rev. 61 (1): 1–8. doi:10.1124/pr.109.001107. PMC 2830119. PMID 19325074.
  12. ^ a b c d e Davenport AP, Alexander SP, Sharman JL, Pawson AJ, Benson HE, Monaghan AE, Liew WC, Mpamhanga CP, Bonner TI, Neubig RR, Pin JP, Spedding M, Harmar AJ (July 2013). "International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list: recommendations for new pairings with cognate ligands". Pharmacol. Rev. 65 (3): 967–86. doi:10.1124/pr.112.007179. PMC 3698937. PMID 23686350. TAAR2 and TAAR9 Two of the trace amine receptors are inactivated in a portion of the human population. There is a polymorphism in TAAR2 (rs8192646) producing a premature stop codon at amino acid 168 in 10–15% of Asians. TAAR9 (formerly TRAR3) appears to be functional in most individuals but has a polymorphic premature stop codon at amino acid 61 (rs2842899) with an allele frequency of 10–30% in different populations (Vanti et al., 2003). TAAR3 (formerly GPR57) and TAAR4 (current gene symbol, TAAR4P) are thought to be pseudogenes in man though functional in rodents (Lindemann et al., 2005).
  13. ^ a b c d e f g h i j k l m n Berry MD, Gainetdinov RR, Hoener MC, Shahid M (December 2017). "Pharmacology of human trace amine-associated receptors: Therapeutic opportunities and challenges". Pharmacology & Therapeutics. 180: 161–180. doi:10.1016/j.pharmthera.2017.07.002. PMID 28723415.
  14. ^ a b Liberles SD, Buck LB (August 2006). "A second class of chemosensory receptors in the olfactory epithelium". Nature. 442 (7103): 645–650. doi:10.1038/nature05066. PMID 16878137. S2CID 2864195.
  15. ^ a b c d e f g h i j k "Trace amine receptor: Introduction". International Union of Basic and Clinical Pharmacology. Retrieved 15 February 2014. Importantly, three ligands identified activating mouse Taars are natural components of mouse urine, a major source of social cues in rodents. Mouse Taar4 recognizes β-phenylethylamine, a compound whose elevation in urine is correlated with increases in stress and stress responses in both rodents and humans. Both mouse Taar3 and Taar5 detect compounds (isoamylamine and trimethylamine, respectively) that are enriched in male versus female mouse urine. Isoamylamine in male urine is reported to act as a pheromone, accelerating puberty onset in female mice [34]. The authors suggest the Taar family has a chemosensory function that is distinct from odorant receptors with a role associated with the detection of social cues. ... The evolutionary pattern of the TAAR gene family is characterized by lineage-specific phylogenetic clustering [26,30,35]. These characteristics are very similar to those observed in the olfactory GPCRs and vomeronasal (V1R, V2R) GPCR gene families.
  16. ^ a b Babusyte A, Kotthoff M, Fiedler J, Krautwurst D (March 2013). "Biogenic amines activate blood leukocytes via trace amine-associated receptors TAAR1 and TAAR2". J. Leukoc. Biol. 93 (3): 387–94. doi:10.1189/jlb.0912433. PMID 23315425.
  17. ^ a b "TAAR2". International Union of Basic and Clinical Pharmacology. Retrieved 15 May 2018. Primary Transduction Mechanisms
    Comments: TAAR2 is found to be coexpressed with Gα proteins. However, the transduction pathway of TAAR2 is yet to be determined.
  18. ^ a b Khan MZ, Nawaz W (October 2016). "The emerging roles of human trace amines and human trace amine-associated receptors (hTAARs) in central nervous system". Biomed. Pharmacother. 83: 439–449. doi:10.1016/j.biopha.2016.07.002. PMID 27424325.
  19. ^ a b c Wallrabenstein I, Singer M, Panten J, Hatt H, Gisselmann G (2015). "Timberol® Inhibits TAAR5-Mediated Responses to Trimethylamine and Influences the Olfactory Threshold in Humans". PLOS One. 10 (12): e0144704. doi:10.1371/journal.pone.0144704. PMC 4684214. PMID 26684881. While mice produce gender-specific amounts of urinary TMA levels and were attracted by TMA, this odor is repellent to rats and aversive to humans [19], indicating that there must be species-specific functions. ... Furthermore, a homozygous knockout of murine TAAR5 abolished the attraction behavior to TMA [19]. Thus, it is concluded that TAAR5 itself is sufficient to mediate a behavioral response at least in mice. ... Whether the TAAR5 activation by TMA elicits specific behavioral output like avoidance behavior in humans still needs to be examined.
  20. ^ Offermanns, Stefan (2008). Walter Rosenthal (ed.). Encyclopedia of Molecular Pharmacology (2nd ed.). Berlin: Springer. pp. 1219–1222. ISBN 978-3540389163.
  21. ^ Wallrabenstein I, Kuklan J, Weber L, Zborala S, Werner M, Altmüller J, Becker C, Schmidt A, Hatt H, Hummel T, Gisselmann G (2013). "Human trace amine-associated receptor TAAR5 can be activated by trimethylamine". PLOS One. 8 (2): e54950. doi:10.1371/journal.pone.0054950. PMC 3564852. PMID 23393561.
  22. ^ Zhang J, Pacifico R, Cawley D, Feinstein P, Bozza T (February 2013). "Ultrasensitive detection of amines by a trace amine-associated receptor". J. Neurosci. 33 (7): 3228–39. doi:10.1523/JNEUROSCI.4299-12.2013. PMC 3711460. PMID 23407976. We show that [human TAAR5] responds to the tertiary amine N,N-dimethylethylamine and to a lesser extent to trimethylamine, a structurally related agonist for mouse and rat TAAR5 (Liberles and Buck, 2006; Staubert et al., 2010; Ferrero et al., 2012).
  23. ^ Dinter J, Mühlhaus J, Wienchol CL, Yi CX, Nürnberg D, Morin S, Grüters A, Köhrle J, Schöneberg T, Tschöp M, Krude H, Kleinau G, Biebermann H (2015). "Inverse agonistic action of 3-iodothyronamine at the human trace amine-associated receptor 5". PLOS One. 10 (2): e0117774. doi:10.1371/journal.pone.0117774. PMC 4382497. PMID 25706283.
  24. ^ a b Izquierdo C, Gómez-Tamayo JC, Nebel JC, Pardo L, Gonzalez A (January 2018). "Identifying human diamine sensors for death related putrescine and cadaverine molecules". PLOS Computational Biology. 14 (1): e1005945. doi:10.1371/journal.pcbi.1005945. PMC 5783396. PMID 29324768.
  25. ^ "TAAR6". International Union of Basic and Clinical Pharmacology. Retrieved 15 May 2018. Tissue Distribution
    Kidney, amygdala, hippocampus; Species: Human; Technique: RT-PCR ...
    Human brain tissues (with the level of expression descending from hippocampus, substantia nigra, amygdala, frontal cortex to basal ganglia), human fetal liver. Not detected in the cerebellum or placenta.; Species: Human; Technique: RT-PCR
  26. ^ Vaganova A, Kuvarzin S, Sycheva A, Gainetdinov R (January 2022). "Deregulation of Trace Amine-Associated Receptors (TAAR) Expression and Signaling Mode in Melanoma". Biomolecules. 12: 114. doi:10.3390/biom12010114.
  27. ^ Mühlhaus J, Dinter J, Nürnberg D, Rehders M, Depke M, Golchert J, Homuth G, Yi CX, Morin S, Köhrle J, Brix K, Tschöp M, Kleinau G, Biebermann H (2014). "Analysis of human TAAR8 and murine Taar8b mediated signaling pathways and expression profile". Int J Mol Sci. 15 (11): 20638–55. doi:10.3390/ijms151120638. PMC 4264187. PMID 25391046.
  28. ^ Liberles SD (October 2015). "Trace amine-associated receptors: ligands, neural circuits, and behaviors". Current Opinion in Neurobiology. 34: 1–7. doi:10.1016/j.conb.2015.01.001. PMC 4508243. PMID 25616211.
  29. ^ "TAAR9". International Union of Basic and Clinical Pharmacology. Retrieved 15 May 2018. Tissue Distribution Comments ... No expression of TAAR9 was detected by RT-PCR in the Grueneberg ganglion [2]. TAAR9 expression was not detected by Northern blot analysis in thalamus, amygdala, midbrain, hippocampus, putamen, caudate, frontal cortex, pons, prostate, stomach, heart, bladder, small intestine, colon or uterus [4].

외부 링크

  • "Trace Amine Receptors". IUPHAR Database of Receptors and Ion Channels. International Union of Basic and Clinical Pharmacology.