오더-5 오각형 타일링
Order-5 pentagonal tiling오더-5 오각형 타일링 | |
---|---|
![]() 쌍곡면의 푸앵카레 디스크 모델 | |
유형 | 쌍곡선 정규 타일링 |
꼭지점 구성 | 55 |
슐레플리 기호 | {5,5} |
와이토프 기호 | 5 5 2 |
콕시터 다이어그램 | ![]() ![]() ![]() ![]() ![]() |
대칭군 | [5,5], (*552) |
이중 | 자기 이중의 |
특성. | 정점-변환, 에지-변환, 얼굴-변환 |
기하학에서 순서-5 오각형 타일링은 쌍곡면의 규칙적인 타일링이다. 그것은 모든 꼭지점 주위에 5개의 오각형으로 구성된 {5,5}의 Schléfli 기호를 가지고 있다. 그런 만큼 자기 이중적이다.
관련 틸팅
구면 | 쌍곡 틸팅 | |||||||
---|---|---|---|---|---|---|---|---|
![]() {2,5} ![]() ![]() ![]() ![]() ![]() | ![]() {3,5} ![]() ![]() ![]() ![]() ![]() | ![]() {4,5} ![]() ![]() ![]() ![]() ![]() | ![]() {5,5} ![]() ![]() ![]() ![]() ![]() | ![]() {6,5} ![]() ![]() ![]() ![]() ![]() | ![]() {7,5} ![]() ![]() ![]() ![]() ![]() | ![]() {8,5} ![]() ![]() ![]() ![]() ![]() | ... | ![]() {∞,5} ![]() ![]() ![]() ![]() ![]() |
이 타일링은 정규 다면체 및 꼭지점 그림(5n)이 있는 기울기의 일부로서 위상학적으로 관련이 있다.
유한한 | 콤팩트 쌍곡선 | 파라콤팩트 | ||||
---|---|---|---|---|---|---|
![]() {5,3} ![]() ![]() ![]() ![]() ![]() | ![]() {5,4} ![]() ![]() ![]() ![]() ![]() | ![]() {5,5} ![]() ![]() ![]() ![]() ![]() | ![]() {5,6} ![]() ![]() ![]() ![]() ![]() | ![]() {5,7} ![]() ![]() ![]() ![]() ![]() | ![]() {5,8}... ![]() ![]() ![]() ![]() ![]() | ![]() {5,∞} ![]() ![]() ![]() ![]() ![]() |
균일한 펜타펜트각 틸팅 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
대칭: [5,5], (*552) | [5,5]+, (552) | ||||||||||
![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() ![]() ![]() | ||||
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ||||
{5,5} | t{5,5} | r{5,5} | 2t{5,5}=t{5,5} | 2r{5,5}={5,5} | rr{5,5} | tr{5,5} | sr{5,5} | ||||
균일 듀얼 | |||||||||||
![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ||||
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | |||||
V5.5.5.5.5 | V5.10.10 | V5.5.5.5 | V5.10.10 | V5.5.5.5.5 | V4.5.4.5 | V4.10.10 | V3.3.5.3.5 |
참고 항목
![]() | 위키미디어 커먼스는 오더-5 오각형 타일링과 관련된 미디어를 보유하고 있다. |
참조
- 존 H. 콘웨이, 하이디 버기엘, 차임 굿맨-스트라스, 2008년 사물의 대칭, ISBN978-1-56881-220-5 (19장, 쌍곡선 아르키메데스 테셀레이션)
- "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.