오더-5 오각형 타일링

Order-5 pentagonal tiling
오더-5 오각형 타일링
Order-5 pentagonal tiling
쌍곡면푸앵카레 디스크 모델
유형 쌍곡선 정규 타일링
꼭지점 구성 55
슐레플리 기호 {5,5}
와이토프 기호 5 5 2
콕시터 다이어그램 CDel node 1.pngCDel 5.pngCDel node.pngCDel 5.pngCDel node.png
대칭군 [5,5], (*552)
이중 자기 이중의
특성. 정점-변환, 에지-변환, 얼굴-변환

기하학에서 순서-5 오각형 타일링쌍곡면의 규칙적인 타일링이다. 그것은 모든 꼭지점 주위에 5개의 오각형으로 구성된 {5,5}의 Schléfli 기호를 가지고 있다. 그런 만큼 자기 이중적이다.

관련 틸팅

구면 쌍곡 틸팅
Spherical pentagonal hosohedron.png
{2,5}
CDel node 1.pngCDel 2.pngCDel node.pngCDel 5.pngCDel node.png
Uniform tiling 532-t2.png
{3,5}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
H2-5-4-primal.svg
{4,5}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 5.pngCDel node.png
H2 tiling 255-1.png
{5,5}
CDel node 1.pngCDel 5.pngCDel node.pngCDel 5.pngCDel node.png
H2 tiling 256-1.png
{6,5}
CDel node 1.pngCDel 6.pngCDel node.pngCDel 5.pngCDel node.png
H2 tiling 257-1.png
{7,5}
CDel node 1.pngCDel 7.pngCDel node.pngCDel 5.pngCDel node.png
H2 tiling 258-1.png
{8,5}
CDel node 1.pngCDel 8.pngCDel node.pngCDel 5.pngCDel node.png
... H2 tiling 25i-1.png
{∞,5}
CDel node 1.pngCDel infin.pngCDel node.pngCDel 5.pngCDel node.png

이 타일링은 정규 다면체 및 꼭지점 그림(5n)이 있는 기울기의 일부로서 위상학적으로 관련이 있다.

유한한 콤팩트 쌍곡선 파라콤팩트
Uniform polyhedron-53-t0.png
{5,3}
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.png
H2-5-4-dual.svg
{5,4}
CDel node 1.pngCDel 5.pngCDel node.pngCDel 4.pngCDel node.png
Uniform tiling 55-t0.png
{5,5}
CDel node 1.pngCDel 5.pngCDel node.pngCDel 5.pngCDel node.png
Uniform tiling 56-t0.png
{5,6}
CDel node 1.pngCDel 5.pngCDel node.pngCDel 6.pngCDel node.png
Uniform tiling 57-t0.png
{5,7}
CDel node 1.pngCDel 5.pngCDel node.pngCDel 7.pngCDel node.png
Uniform tiling 58-t0.png
{5,8}...
CDel node 1.pngCDel 5.pngCDel node.pngCDel 8.pngCDel node.png
H2 tiling 25i-4.png
{5,∞}
CDel node 1.pngCDel 5.pngCDel node.pngCDel infin.pngCDel node.png
균일한 펜타펜트각 틸팅
대칭: [5,5], (*552) [5,5]+, (552)
CDel node 1.pngCDel 5.pngCDel node.pngCDel 5.pngCDel node.png
= CDel node h1.pngCDel 4.pngCDel node.pngCDel 5.pngCDel node.png
CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 5.pngCDel node.png
= CDel node h1.pngCDel 4.pngCDel node.pngCDel 5.pngCDel node 1.png
CDel node.pngCDel 5.pngCDel node 1.pngCDel 5.pngCDel node.png
= CDel node h0.pngCDel 4.pngCDel node.pngCDel 5.pngCDel node 1.png
CDel node.pngCDel 5.pngCDel node 1.pngCDel 5.pngCDel node 1.png
= CDel node h1.pngCDel 4.pngCDel node.pngCDel 5.pngCDel node 1.png
CDel node.pngCDel 5.pngCDel node.pngCDel 5.pngCDel node 1.png
= CDel node h1.pngCDel 4.pngCDel node.pngCDel 5.pngCDel node.png
CDel node 1.pngCDel 5.pngCDel node.pngCDel 5.pngCDel node 1.png
= CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 5.pngCDel node.png
CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 5.pngCDel node 1.png
= CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 5.pngCDel node 1.png
CDel node h.pngCDel 5.pngCDel node h.pngCDel 5.pngCDel node h.png
= CDel node h0.pngCDel 4.pngCDel node h.pngCDel 5.pngCDel node h.png
Uniform tiling 552-t0.png Uniform tiling 552-t01.png Uniform tiling 552-t1.png Uniform tiling 552-t12.png Uniform tiling 552-t2.png Uniform tiling 552-t02.png Uniform tiling 552-t012.png Uniform tiling 552-snub.png
{5,5} t{5,5}
r{5,5} 2t{5,5}=t{5,5} 2r{5,5}={5,5} rr{5,5} tr{5,5} sr{5,5}
균일 듀얼
CDel node f1.pngCDel 5.pngCDel node.pngCDel 5.pngCDel node.png CDel node f1.pngCDel 5.pngCDel node f1.pngCDel 5.pngCDel node.png CDel node.pngCDel 5.pngCDel node f1.pngCDel 5.pngCDel node.png CDel node.pngCDel 5.pngCDel node f1.pngCDel 5.pngCDel node f1.png CDel node.pngCDel 5.pngCDel node.pngCDel 5.pngCDel node f1.png CDel node f1.pngCDel 5.pngCDel node.pngCDel 5.pngCDel node f1.png CDel node f1.pngCDel 5.pngCDel node f1.pngCDel 5.pngCDel node f1.png CDel node fh.pngCDel 5.pngCDel node fh.pngCDel 5.pngCDel node fh.png
Uniform tiling 552-t2.png Order5 pentakis pentagonal til.png H2-5-4-primal.svg Order5 pentakis pentagonal til.png Uniform tiling 552-t0.png H2-5-4-rhombic.svg H2-5-4-kis-primal.svg
V5.5.5.5.5 V5.10.10 V5.5.5.5 V5.10.10 V5.5.5.5.5 V4.5.4.5 V4.10.10 V3.3.5.3.5

참고 항목

참조

  • 존 H. 콘웨이, 하이디 버기엘, 차임 굿맨-스트라스, 2008년 사물의 대칭, ISBN978-1-56881-220-5 (19장, 쌍곡선 아르키메데스 테셀레이션)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.

외부 링크