스눕 칠각 타일링
Snub heptaheptagonal tiling스눕 칠각 타일링 | |
---|---|
![]() 쌍곡면의 푸앵카레 원반 모형 | |
유형 | 쌍곡선 균일 타일링 |
정점 구성 | 3.3.7.3.7 |
슐레플리 기호 | sr{7,7} s s |
위토프 기호 | 7 7 2 |
콕서터 다이어그램 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
대칭군 | [7,7]+, (772) [7+,4], (7*2) |
듀얼 | 주문-7-7 플로렛 오각형 타일링 |
특성. | 정점-이행 |
기하학에서 스너브 헵타각형 타일링은 쌍곡면의 균일한 타일링입니다.그것은 두 개의 정삼각형과 모든 정점을 둘러싼 세 개의 정삼각형으로 구성된 sr{7,7}의 슐레플리 기호를 가지고 있다.
이미지들
카이랄 쌍으로 그려지며 검은색 삼각형 사이에 모서리가 누락됨:
대칭
[7,4]대칭에서 하나의 색 헵타곤만으로 이중대칭색을 구성할 수 있다.
관련 타일링
균일 칠각 타일링 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
대칭: [7,7], (*772) | [7,7]+, (772) | ||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() ![]() ![]() | ||||
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ||||
{7,7} | t{7,7} | r{7,7} | 2t{7,7}=t{7,7} | 2r{7,7}={7,7} | rr{7,7} | tr{7,7} | sr{7,7} | ||||
균일한 이중화 | |||||||||||
![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ||||
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | |||||
V77 | V7.14.14 | V7.7.7 | V7.14.14 | V77 | V4.7.4.7 | V4.14.14 | V3.3.7.3.7 |
균일 칠각형/사각형 타일링 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
대칭: [7,4], (*742) | [7,4]+, (742) | [7+,4], (7*2) | [7,4,1+], (*772) | ||||||||
![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ||
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ||
{7,4} | t{7,4} | r{7,4} | 2t{7,4}=t{4,7} | 2r{7,4}={4,7} | rr{7,4} | tr{7,4} | sr{7,4} | s{7,4} | h{4,7} | ||
균일한 이중화 | |||||||||||
![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ||
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ||||
V74 | V4.14.14 | V4.7.4.7 | V7.8.8 | V47 | V4.4.7.4 | V4.8.14 | V3.3.4.3.7 | V3.3.7.3.7 | V77 |
스너브 타일링의 4n2 대칭 돌연변이: 3.3.n.3.n | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
대칭 4n2 | 구면 | 유클리드 | 콤팩트 쌍곡선 | 파라콤팩트 | |||||||
222 | 322 | 442 | 552 | 662 | 772 | 882 | ∞∞2 | ||||
스너브 수치 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | |||
설정. | 3.3.2.3.2 | 3.3.3.3.3 | 3.3.4.3.4 | 3.3.5.3.5 | 3.3.6.3.6 | 3.3.7.3.7 | 3.3.8.3.8 | 3.3.∞.3.∞ | |||
자이로 수치 | ![]() | ![]() | ![]() | ![]() | |||||||
설정. | V3.3.2.3.2 | V3.3.3.3 | V3.3.4.3.4 | V3.3.5.3.5 | V3.3.6.3.6 | V3.3.7.3.7 | V3.3.8.3.8 | V3.3.3. |
「 」를 참조해 주세요.

Wikimedia Commons에는 Uniform Tiling 3-3-7-3-7과 관련된 미디어가 있습니다.
레퍼런스
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN978-1-56881-220-5(19장, 쌍곡 아르키메데스 테셀레이션)
- "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.