스눕 칠각 타일링

Snub heptaheptagonal tiling
스눕 칠각 타일링
Snub heptaheptagonal tiling
쌍곡면푸앵카레 원반 모형
유형 쌍곡선 균일 타일링
정점 구성 3.3.7.3.7
슐레플리 기호 sr{7,7} s s
위토프 기호 7 7 2
콕서터 다이어그램 CDel node h.pngCDel 7.pngCDel node h.pngCDel 7.pngCDel node h.png
CDel node h.pngCDel 7.pngCDel node h.pngCDel 4.pngCDel node.png
대칭군 [7,7]+, (772)
[7+,4], (7*2)
듀얼 주문-7-7 플로렛 오각형 타일링
특성. 정점-이행

기하학에서 스너브 헵타각형 타일링은 쌍곡면균일한 타일링입니다.그것은 두 개의 정삼각형과 모든 정점을 둘러싼 세 개의 정삼각형으로 구성된 sr{7,7}의 슐레플리 기호를 가지고 있다.

이미지들

카이랄 쌍으로 그려지며 검은색 삼각형 사이에 모서리가 누락됨:

H2 snub 277a.pngH2 snub 277b.png

대칭

[7,4]대칭에서 하나의 색 헵타곤만으로 이중대칭색을 구성할 수 있다.

Uniform tiling 74-h01.png

관련 타일링

균일 칠각 타일링
대칭: [7,7], (*772) [7,7]+, (772)
CDel node 1.pngCDel 7.pngCDel node.pngCDel 7.pngCDel node.png = CDel nodes 10ru.pngCDel split2-77.pngCDel node.png
= CDel node h1.pngCDel 4.pngCDel node.pngCDel 7.pngCDel node.png
CDel node 1.pngCDel 7.pngCDel node 1.pngCDel 7.pngCDel node.png = CDel nodes 10ru.pngCDel split2-77.pngCDel node 1.png
= CDel node h1.pngCDel 4.pngCDel node.pngCDel 7.pngCDel node 1.png
CDel node.pngCDel 7.pngCDel node 1.pngCDel 7.pngCDel node.png = CDel nodes.pngCDel split2-77.pngCDel node 1.png
= CDel node h0.pngCDel 4.pngCDel node.pngCDel 7.pngCDel node 1.png
CDel node.pngCDel 7.pngCDel node 1.pngCDel 7.pngCDel node 1.png = CDel nodes 01rd.pngCDel split2-77.pngCDel node 1.png
= CDel node h1.pngCDel 4.pngCDel node.pngCDel 7.pngCDel node 1.png
CDel node.pngCDel 7.pngCDel node.pngCDel 7.pngCDel node 1.png = CDel nodes 01rd.pngCDel split2-77.pngCDel node.png
= CDel node h1.pngCDel 4.pngCDel node.pngCDel 7.pngCDel node.png
CDel node 1.pngCDel 7.pngCDel node.pngCDel 7.pngCDel node 1.png = CDel nodes 11.pngCDel split2-77.pngCDel node.png
= CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 7.pngCDel node.png
CDel node 1.pngCDel 7.pngCDel node 1.pngCDel 7.pngCDel node 1.png =CDel nodes 11.pngCDel split2-77.pngCDel node 1.png
= CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 7.pngCDel node 1.png
CDel node h.pngCDel 7.pngCDel node h.pngCDel 7.pngCDel node h.png =CDel nodes hh.pngCDel split2-77.pngCDel node h.png
= CDel node h0.pngCDel 4.pngCDel node h.pngCDel 7.pngCDel node h.png
Uniform tiling 77-t0.png Uniform tiling 77-t01.png Uniform tiling 77-t1.png Uniform tiling 77-t12.png Uniform tiling 77-t2.png Uniform tiling 77-t02.png Uniform tiling 77-t012.png Uniform tiling 77-snub.png
{7,7} t{7,7}
r{7,7} 2t{7,7}=t{7,7} 2r{7,7}={7,7} rr{7,7} tr{7,7} sr{7,7}
균일한 이중화
CDel node f1.pngCDel 7.pngCDel node.pngCDel 7.pngCDel node.png CDel node f1.pngCDel 7.pngCDel node f1.pngCDel 7.pngCDel node.png CDel node.pngCDel 7.pngCDel node f1.pngCDel 7.pngCDel node.png CDel node.pngCDel 7.pngCDel node f1.pngCDel 7.pngCDel node f1.png CDel node.pngCDel 7.pngCDel node.pngCDel 7.pngCDel node f1.png CDel node f1.pngCDel 7.pngCDel node.pngCDel 7.pngCDel node f1.png CDel node f1.pngCDel 7.pngCDel node f1.pngCDel 7.pngCDel node f1.png CDel node fh.pngCDel 7.pngCDel node fh.pngCDel 7.pngCDel node fh.png
Uniform tiling 77-t2.png Order7 heptakis heptagonal til.png Uniform tiling 74-t2.png Order7 heptakis heptagonal til.png Uniform tiling 77-t0.png Ord74 qreg rhombic til.png Hyperbolic domains 772.png
V77 V7.14.14 V7.7.7 V7.14.14 V77 V4.7.4.7 V4.14.14 V3.3.7.3.7
균일 칠각형/사각형 타일링
대칭: [7,4], (*742) [7,4]+, (742) [7+,4], (7*2) [7,4,1+], (*772)
CDel node 1.pngCDel 7.pngCDel node.pngCDel 4.pngCDel node.png CDel node 1.pngCDel 7.pngCDel node 1.pngCDel 4.pngCDel node.png CDel node.pngCDel 7.pngCDel node 1.pngCDel 4.pngCDel node.png CDel node.pngCDel 7.pngCDel node 1.pngCDel 4.pngCDel node 1.png CDel node.pngCDel 7.pngCDel node.pngCDel 4.pngCDel node 1.png CDel node 1.pngCDel 7.pngCDel node.pngCDel 4.pngCDel node 1.png CDel node 1.pngCDel 7.pngCDel node 1.pngCDel 4.pngCDel node 1.png CDel node h.pngCDel 7.pngCDel node h.pngCDel 4.pngCDel node h.png CDel node h.pngCDel 7.pngCDel node h.pngCDel 4.pngCDel node.png CDel node.pngCDel 7.pngCDel node.pngCDel 4.pngCDel node h.png
Uniform tiling 74-t0.png Uniform tiling 74-t01.png Uniform tiling 74-t1.png Uniform tiling 74-t12.png Uniform tiling 74-t2.png Uniform tiling 74-t02.png Uniform tiling 74-t012.png Uniform tiling 74-snub.png Uniform tiling 74-h01.png Uniform tiling 77-t0.png
{7,4} t{7,4} r{7,4} 2t{7,4}=t{4,7} 2r{7,4}={4,7} rr{7,4} tr{7,4} sr{7,4} s{7,4} h{4,7}
균일한 이중화
CDel node f1.pngCDel 7.pngCDel node.pngCDel 4.pngCDel node.png CDel node f1.pngCDel 7.pngCDel node f1.pngCDel 4.pngCDel node.png CDel node.pngCDel 7.pngCDel node f1.pngCDel 4.pngCDel node.png CDel node.pngCDel 7.pngCDel node f1.pngCDel 4.pngCDel node f1.png CDel node.pngCDel 7.pngCDel node.pngCDel 4.pngCDel node f1.png CDel node f1.pngCDel 7.pngCDel node.pngCDel 4.pngCDel node f1.png CDel node f1.pngCDel 7.pngCDel node f1.pngCDel 4.pngCDel node f1.png CDel node fh.pngCDel 7.pngCDel node fh.pngCDel 4.pngCDel node fh.png CDel node fh.pngCDel 7.pngCDel node fh.pngCDel 4.pngCDel node.png CDel node.pngCDel 7.pngCDel node.pngCDel 4.pngCDel node fh.png
Uniform tiling 74-t2.png Hyperbolic domains 772.png Ord74 qreg rhombic til.png Order4 heptakis heptagonal til.png Uniform tiling 74-t0.png Deltoidal tetraheptagonal til.png Hyperbolic domains 742.png Uniform tiling 77-t2.png
V74 V4.14.14 V4.7.4.7 V7.8.8 V47 V4.4.7.4 V4.8.14 V3.3.4.3.7 V3.3.7.3.7 V77
스너브 타일링의 4n2 대칭 돌연변이: 3.3.n.3.n
대칭
4n2
구면 유클리드 콤팩트 쌍곡선 파라콤팩트
222 322 442 552 662 772 882 ∞∞2
스너브
수치
Digonal antiprism.png Pseudoicosahedron-3.png Uniform tiling 44-snub.png Uniform tiling 552-snub.png Uniform tiling 66-snub.png Uniform tiling 77-snub.png Uniform tiling 88-snub.png Uniform tiling ii2-snub.png
설정. 3.3.2.3.2 3.3.3.3.3 3.3.4.3.4 3.3.5.3.5 3.3.6.3.6 3.3.7.3.7 3.3.8.3.8 3.3.∞.3.
자이로
수치
Digonal trapezohedron.png Pyritohedron.png Tiling Dual Semiregular V3-3-4-3-4 Cairo Pentagonal.svg Infinitely-infinite-order floret pentagonal tiling.png
설정. V3.3.2.3.2 V3.3.3.3 V3.3.4.3.4 V3.3.5.3.5 V3.3.6.3.6 V3.3.7.3.7 V3.3.8.3.8 V3.3.3.

「 」를 참조해 주세요.

레퍼런스

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN978-1-56881-220-5(19장, 쌍곡 아르키메데스 테셀레이션)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.

외부 링크