절단된 무한 순서 사각형 타일링

Truncated infinite-order square tiling
무한 순서 잘린 사각 타일링
Truncated infinite-order square tiling
쌍곡면푸앵카레 디스크 모델
유형 쌍곡선 균일 타일링
꼭지점 구성 ∞.8.8
슐레플리 기호 t{4,610}
와이토프 기호 2 ∞ 4
콕시터 다이어그램 CDel node.pngCDel infin.pngCDel node 1.pngCDel 4.pngCDel node 1.png
대칭군 [∞,4], (*∞42)
이중 아페이로키스 아페이로겐 타일링
특성. 정점 변환

기하학에서 잘린 무한 순서 사각 타일링쌍곡면의 균일한 타일링이다. 그것은 t{4,163}의 Schléfli 기호를 가지고 있다.

균일색

(*∞44) 대칭에서 이 타일링은 3가지 색을 가진다. Isosceles 삼각형 영역을 이등분하면 대칭을 *142 대칭으로 두 배로 늘릴 수 있다.

H2checkers 44i.pngH2 tiling 44i-7.png

대칭

타일링의 이중은 궤도 대칭의 기본 영역(* domains44)을 나타낸다. [(재)4,4](*∞44) 대칭부터 거울 제거 및 교대 연산자에 의한 15개의 작은 지수 부분군(11개 고유)이 있다. 거울은 가지 주문이 모두 균등하면 제거할 수 있고, 주변 가지 주문을 절반으로 줄일 수 있다. 거울 두 개를 제거하면 제거된 거울이 만나는 곳에 반차량의 회전 지점이 남게 된다. 이러한 이미지에서 기본 도메인은 흑백으로 번갈아 가며 색상의 경계에는 거울이 존재한다. 대칭은 기본 영역을 가로지르는 이등분 거울을 추가하면 *142로 두 배가 될 수 있다. 부분군 지수-8 그룹, [(1+,164,1+,4,1+,4]](∞22∞22)은 [(∞,4,4)]의 정류자 부분군이다.

[(수치,4,4)](* (*44)의 작은 지수 부분군
기본
도메인
H2checkers 44i.png H2chess 44ie.png
H2chess 44ib.png
H2chess 44if.png
H2chess 44ic.png
H2chess 44id.png
H2chess 44ia.png
H2chess 44ib.png
H2chess 44ic.png
H2chess 44ia.png
부분군 지수 1 2 4
콕시터
(svifold)
[(4,4,∞)]
CDel node c1.pngCDel split1-44.pngCDel branch c3-2.pngCDel labelinfin.png
(*∞44)
[(1+,4,4,∞)]
CDel node c1.pngCDel split1-44.pngCDel branch h0c2.pngCDel labelinfin.png
(*∞424)
[(4,4,1+,∞)]
CDel node c1.pngCDel split1-44.pngCDel branch c3h0.pngCDel labelinfin.png
(*∞424)
[(4,1+,4,∞)]
CDel labelh.pngCDel node.pngCDel split1-44.pngCDel branch c3-2.pngCDel labelinfin.png
(*∞2∞2)
[(4,1+,4,1+,∞)]
CDel labelh.pngCDel node.pngCDel split1-44.pngCDel branch c3h0.pngCDel labelinfin.png
2*∞2∞2
[(1+,4,4,1+,∞)]
CDel node c1.pngCDel split1-44.pngCDel branch h0h0.pngCDel labelinfin.png
(∞*2222)
[(4,4+,∞)]
CDel node h2.pngCDel split1-44.pngCDel branch c3h2.pngCDel labelinfin.png
(4*∞2)
[(4+,4,∞)]
CDel node h2.pngCDel split1-44.pngCDel branch h2c2.pngCDel labelinfin.png
(4*∞2)
[(4,4,∞+)]
CDel node.pngCDel split1-44.pngCDel branch h2h2.pngCDel labelinfin.png
(∞*22)
[(1+,4,1+,4,∞)]
CDel labelh.pngCDel node.pngCDel split1-44.pngCDel branch h0c2.pngCDel labelinfin.png
2*∞2∞2
[(4+,4+,∞)]
CDel node h4.pngCDel split1-44.pngCDel branch h2h2.pngCDel labelinfin.png
(∞22×)
회전 부분군
부분군 지수 2 4 8
콕시터
(svifold)
[(4,4,∞)]+
CDel node h2.pngCDel split1-44.pngCDel branch h2h2.pngCDel labelinfin.png
(∞44)
[(1+,4,4+,∞)]
CDel node h2.pngCDel split1-44.pngCDel branch h0h2.pngCDel labelinfin.png
(∞323)
[(4+,4,1+,∞)]
CDel node h2.pngCDel split1-44.pngCDel branch h2h0.pngCDel labelinfin.png
(∞424)
[(4,1+,4,∞+)]
CDel labelh.pngCDel node.pngCDel split1-44.pngCDel branch h2h2.pngCDel labelinfin.png
(∞434)
[(1+,4,1+,4,1+,∞)] = [(4+,4+,∞+)]
CDel node h4.pngCDel split1-44.pngCDel branch h4h4.pngCDel labelinfin.png
(∞22∞22)

관련 다면체 및 타일링

*n42 잘린 틸팅의 대칭 돌연변이: n.8.8
대칭
*n42
[n,4]
구면 유클리드 주 콤팩트 쌍곡선 파라콤팩트
*242
[2,4]
*342
[3,4]
*442
[4,4]
*542
[5,4]
*642
[6,4]
*742
[7,4]
*842
[8,4]...
*∞42
[∞,4]
잘림
수치
Octagonal dihedron.svg Uniform tiling 432-t01.png Uniform tiling 44-t12.svg H2-5-4-trunc-primal.svg H2 tiling 246-6.png H2 tiling 247-6.png H2 tiling 248-6.png H2 tiling 24i-6.png
구성. 2.8.8 3.8.8 4.8.8 5.8.8 6.8.8 7.8.8 8.8.8 ∞.8.8
n-11
수치
Spherical octagonal hosohedron.png Spherical triakis octahedron.png 1-uniform 2 dual.svg H2-5-4-kis-dual.svg Order4 hexakis hexagonal til.png Order4 heptakis heptagonal til.png H2-8-3-primal.svg Ord4 apeirokis apeirogonal til.png
구성. V2.8.8 V3.8.8 V4.8.8 V5.8.8 V6.8.8 V7.8.8 V8.8.8 V∞.8.8
[1998,4] 계열의 파라콤팩트 유니폼 틸팅
CDel node 1.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node.png CDel node 1.pngCDel infin.pngCDel node 1.pngCDel 4.pngCDel node.png CDel node.pngCDel infin.pngCDel node 1.pngCDel 4.pngCDel node.png CDel node.pngCDel infin.pngCDel node 1.pngCDel 4.pngCDel node 1.png CDel node.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node 1.png CDel node 1.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node 1.png CDel node 1.pngCDel infin.pngCDel node 1.pngCDel 4.pngCDel node 1.png
H2 tiling 24i-1.png H2 tiling 24i-3.png H2 tiling 24i-2.png H2 tiling 24i-6.png H2 tiling 24i-4.png H2 tiling 24i-5.png H2 tiling 24i-7.png
{∞,4} t{{{190,4} r{{{195,4} 2t{{t},4}=t{4,4} 2r{{{{196,4}={4,4} rr{reas,4} tr{{propert,4}
이중 수치
CDel node f1.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node.png CDel node f1.pngCDel infin.pngCDel node f1.pngCDel 4.pngCDel node.png CDel node.pngCDel infin.pngCDel node f1.pngCDel 4.pngCDel node.png CDel node.pngCDel infin.pngCDel node f1.pngCDel 4.pngCDel node f1.png CDel node.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node f1.png CDel node f1.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node f1.png CDel node f1.pngCDel infin.pngCDel node f1.pngCDel 4.pngCDel node f1.png
H2chess 24ib.png H2chess 24if.png H2chess 24ia.png H2chess 24ie.png H2chess 24ic.png H2chess 24id.png H2checkers 24i.png
V∞4 V4.1987.12 V(4.19)2 V8.8.1987 V4 V43.1987 V4.8.1987
교대
[1+,∞,4]
(*44∞)
[∞+,4]
(∞*2)
[∞,1+,4]
(*2∞2∞)
[∞,4+]
(4*∞)
[∞,4,1+]
(*∞∞2)
[(∞,4,2+)]
(2*2∞)
[∞,4]+
(∞42)
CDel node h1.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node.png
= CDel branch 10ru.pngCDel split2-44.pngCDel node.png
CDel node h.pngCDel infin.pngCDel node h.pngCDel 4.pngCDel node.png CDel node.pngCDel infin.pngCDel node h.pngCDel 4.pngCDel node.png CDel node.pngCDel infin.pngCDel node h.pngCDel 4.pngCDel node h.png CDel node.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node h1.png
= CDel node.pngCDel split1-ii.pngCDel nodes 10lu.png
CDel node h.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node h.png CDel node h.pngCDel infin.pngCDel node h.pngCDel 4.pngCDel node h.png
h{{{no,4} s{{195,4} hr{hrs,4} s{4,7} h{4,610} hrrr{nu,4} s{{195,4}
H2 tiling 44i-1.png Uniform tiling i42-h01.png H2 tiling 2ii-1.png Uniform tiling i42-snub.png
교류 듀얼
CDel node fh.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node.png CDel node fh.pngCDel infin.pngCDel node fh.pngCDel 4.pngCDel node.png CDel node.pngCDel infin.pngCDel node fh.pngCDel 4.pngCDel node.png CDel node.pngCDel infin.pngCDel node fh.pngCDel 4.pngCDel node fh.png CDel node.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node fh.png CDel node fh.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node fh.png CDel node fh.pngCDel infin.pngCDel node fh.pngCDel 4.pngCDel node fh.png
H2chess 44ib.png H2 tiling 2ii-4.png
V (1998.4)4 V3. (3.219) V(4.168.4)2 V3.1987(3.4)2 V∞ V∞.44 V3.3.4.3.1987

참고 항목

참조

  • 존 H. 콘웨이, 하이디 버기엘, 차임 굿맨-스트라스, 2008년 사물의 대칭, ISBN978-1-56881-220-5 (19장, 쌍곡선 아르키메데스 테셀레이션)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.

외부 링크