Constant elasticity of variance model
In mathematical finance, the CEV or constant elasticity of variance model is a stochastic volatility model that attempts to capture stochastic volatility and the leverage effect. The model is widely used by practitioners in the financial industry, especially for modelling equities and commodities. It was developed by John Cox in 1975.[1]
Dynamic
The CEV model describes a process which evolves according to the following stochastic differential equation:
in which S is the spot price, t is time, and μ is a parameter characterising the drift, σ and γ are other parameters, and W is a Brownian motion.[2] And so we have
The constant parameters satisfy the conditions .
The parameter controls the relationship between volatility and price, and is the central feature of the model. When we see the so-called leverage effect, commonly observed in equity markets, where the volatility of a stock increases as its price falls. Conversely, in commodity markets, we often observe , the so-called inverse leverage effect,[3][4] whereby the volatility of the price of a commodity tends to increase as its price increases.
참고 항목
참조
- ^ Cox, J. "옵션 가격 책정 I: 확산의 지속적인 탄력성" 1975년 스탠포드 대학의 미발표 초안.
- ^ 2009년 7월 13일 바딤 리네츠키 & 라파엘 멘도자즈 '분산의 지속적인 탄력성 모델' (2018-02-20 액세스)
- ^ 이매뉴얼, DC, J.D. 맥베스, 1982년 "분산의 지속적 탄력성 콜옵션 가격결정모형의 추가 결과." 금융 및 정량분석 저널, 4 : 533–553
- ^ 2009년 YF, Geman, H, Sihi. "CEV 모델에 따른 상품 가격 모델링." Journal of Alternative Investments 11 (3): 65–84. doi:10.3905/JAI.2009.11.3.065
외부 링크
- CEV 및 SABR 모델에 대한 점근법
- Monte-Carlo 및 유한차이법을 적용한 CEV 모델에서의 가격 및 묵시적 변동성
- CEV Model delamotte-b.fr에서 유럽 옵션의 가격 및 암시적 변동성